Spectral color

A spectral color is a color that is evoked in a normal human by a single wavelength of light in the visible spectrum, or by a relatively narrow band of wavelengths, also known as monochromatic light. Every wavelength of visible light is perceived as a spectral color, in a continuous spectrum; the colors of sufficiently close wavelengths are indistinguishable.

The spectrum is often divided into named colors, though any division is somewhat arbitrary: the spectrum is continuous. Traditional colors in English include: red, orange, yellow, green, blue, and violet. In some other languages the ranges corresponding to color names do not necessarily agree with those in English.

The division used by Isaac Newton, in his color wheel, was: red, orange, yellow, green, blue, indigo and violet; a mnemonic for this order is “Roy G. Biv”. In modern divisions of the spectrum, indigo is often omitted.

One needs at least trichromatic color vision for there to be a distinction between spectral and non-spectral colours: trichromacy gives a possibility to perceive both hue and saturation in the chroma. In color models capable of representing spectral colors, such as CIELUV, a spectral color has the maximal saturation.

In color spaces
In color spaces which include all, or most spectral colors, they form a part of boundary of the set of all real colors. If luminance is counted, then spectral colors form a surface, otherwise their locus is a curve in a two-dimensional chromaticity space.

Theoretically, only RGB-implemented colors which might be really spectral are its primaries: red, green, and blue, whereas any other (mixed) color is inherently non-spectral. But due to different chromaticity properties of different spectral segments, and also due to practical limitations of light sources, the actual distance between RGB pure color wheel colors and spectral colors shows a complicated dependence on the hue. Due to location of R and G primaries near the almost “flat” spectral segment, RGB color space is reasonably good with approximating spectral orange, yellow, and bright (yellowish) green, but is especially poor in reaching a visual appearance of spectral colors between green and blue, as well as extreme spectral colors. The sRGB standard has an additional problem with its “red” primary which is shifted to orange due to a trade-off between purity of red and its reasonable luminance, so that the red spectral became unreachable. Some samples in the table below provide only rough approximations of spectral and near-spectral colors.

CMYK is usually even poorer than RGB in its reach of spectral colors, with notable exception of process yellow, which is rather close to spectral colors due to aforementioned flatness of the spectral locus in the red–green segment.

Note that spectral color are universally included to scientific color models such as CIE 1931, but industrial and consumer color spaces such as sRGB, CMYK, and Pantone, do not include any of spectral colors.

Table of spectral or near-spectral colors
Most of the colors listed do not reach the maximal (spectral) colorfulness, or are not usually seen with it, but they can be saturated enough to be perceived closely to their dominant wavelength spectral colors. Ranges of wavelengths and frequencies are only approximate.

Wavelengths and frequencies in gray indicate dominant wavelengths and frequencies, not actual range of spectrum composing a specified color, which extends farther to both sides and is averaged by receptors to give a near-spectral appearance.

Color term,
light source, or dye
Sample Wavelength, nm Frequency, THz Hue
Red 740–625 405–479 A traditional, broad color term, which includes some nearby non-spectral hues. The short-wave boundary can extend to 620 or even about 610 nanometers
• Extreme spectral red = red (CIE RGB) × 740 405   ? The exact spectral position has more influence on luminance than on chromaticity in this band; chromaticities are almost the same for these two variants
• red (Wide-gamut RGB primary) × ≈ 700 ≈ 428   ?
• Helium–neon laser × 633 473   ?
• Some carminedyes × NIR–602 497-NIR   ? Near-spectral, but other parts of carmine (color) are purple
• red (sRGB primary) 614–609 488–492 Noticeably non-spectral
Orange 620–585
0°–30° The short-wave (yellowish) part corresponds to amber, the long-wave (reddish) side nears (or includes) RGB red above.
Yellow 585–560
A traditional color term
• Sodium-vapor lamp ≈ 589 ≈ 508   ?
• yellow (NCS) ? ? 50° Gold has almost identical chromaticity at h = 51°
• Munsell 5Y for V = 10, C = 22 ≈ 577 ≈ 519   ?
• process (canary) yellow ? ? 56°
• yellow (sRGB secondary) ≈ 570 ? 60°
• Chartreuse yellow ? ? 68°
  Lime ≈ 564 ? ≈ 75° May be classified as either green or yellow
Green 565–??? 530–??? A traditional, broad color term
• Chartreuse green ? ? 90°
• Bright green ≈ 556 ? 96°
• Harlequin ≈ 552 ? 105°
• green (sRGB primary) ≈ 549 ≈ 547 120° Noticeably non-spectral
• green (Wide-gamut RGBprimary) × ≈ 525 ≈ 571   ? Almost spectral
• Spring green (sRGB definition) × ? ? 150° May lie rather far from the spectrum
• green (NCS) × ? ? 160°
• Munsell 5G for V = 4, C = 29 × ≈ 503 ≈ 597 (?)≈ 163°

Cyan 500+–480
Sometimes included (or overlaps) with blue, terminological distinction between the two is inconsistent
• Turquoise × ? ? ≈ 175° Most of “turquoise” lies far away of the spectrum
• cyan (sRGB secondary) × 488 ? 180° Lie rather far from the spectrum
• process cyan × ? ? 193°
Blue 490–450
A traditional, broad color term, which used to include cyan
• blue (NCS) × ? ? 197° Lies rather far from the spectrum
• Azure (sRGB definition) × ≈ 488 ≈ 614 ≈ 210° May lie rather far from the spectrum
• Munsell 5B for V = 5, C = 20 × ≈ 482 ≈ 622 (?)≈ 225°

• blue (RGB primary) 466–436 ? 240°
(of sRGB)
May be classified as indigo or (if indigo is omitted) as violet
Indigo ≈ 446 ≈ 672 (?)≈ 243°

Definition is controversial, this wavelength least disputably belongs to “indigo”
Violet × 450–400
up to277°

Far spectral violet is very dim and rarely seen. The term also extends to purples

Source From Wikipedia