Shinkansen

The Shinkansen (Japanese: 新幹線), colloquially known in English as the bullet train, is a network of high-speed railway lines in Japan. Initially built to connect distant Japanese regions with Tokyo, the capital, in order to aid economic growth and development, beyond long-distance travel some sections around the largest metropolitan areas are used as a commuter rail network. It is operated by five Japan Railways Group companies.

Starting with the Tōkaidō Shinkansen (515.4 km, 320.3 mi) in 1964, the network has expanded to currently consist of 2,764.6 km (1,717.8 mi) of lines with maximum speeds of 240–320 km/h (150–200 mph), 283.5 km (176.2 mi) of Mini-Shinkansen lines with a maximum speed of 130 km/h (80 mph), and 10.3 km (6.4 mi) of spur lines with Shinkansen services. The network presently links most major cities on the islands of Honshu and Kyushu, and Hakodate on northern island of Hokkaido, with an extension to Sapporo under construction and scheduled to commence in March 2031. The maximum operating speed is 320 km/h (200 mph) (on a 387.5 km section of the Tōhoku Shinkansen). Test runs have reached 443 km/h (275 mph) for conventional rail in 1996, and up to a world record 603 km/h (375 mph) for SCMaglev trains in April 2015.

The original Tōkaidō Shinkansen, connecting Tokyo, Nagoya and Osaka, Japan’s three largest cities, is the world’s busiest high-speed rail line. In the one-year period preceding March 2017, it carried 159 million passengers, and since its opening more than five decades ago, it has transported more than 5.6 billion total passengers The service on the line operates much larger trains and at higher frequency than most other high speed lines in the world. At peak times, the line carries up to thirteen trains per hour in each direction with sixteen cars each (1,323-seat capacity and occasionally additional standing passengers) with a minimum headway of three minutes between trains.

Japan’s Shinkansen network had the highest annual passenger ridership (a maximum of 353 million in 2007) of any high-speed rail network until 2011, when the Chinese high-speed railway network surpassed it at 370 million passengers annually, reaching over 1.7 billion annual passengers in 2017, though the total cumulative passengers, at over 10 billion, is still larger. While the Shinkansen network has been expanding, Japan’s declining population is expected to cause ridership to decline over time. The recent expansion in tourism has boosted ridership marginally.

Etymology
Shinkansen (Japanese: 新幹線) in Japanese means new trunkline or new main line, but the word is used to describe both the railway lines the trains run on and the trains themselves. In English, the trains are also known as the bullet train. The term bullet train (Japanese: 弾丸列車 Hepburn: dangan ressha) originates from 1939, and was the initial name given to the Shinkansen project in its earliest planning stages. Furthermore, the name superexpress (Japanese: 超特急 Hepburn: chō-tokkyū), used exclusively until 1972 for Hikari trains on the Tōkaidō Shinkansen, is used today in English-language announcements and signage.

History
Japan was the first country to build dedicated railway lines for high-speed travel. Because of the mountainous terrain, the existing network consisted of 1,067 mm (3 ft 6 in) narrow-gauge lines, which generally took indirect routes and could not be adapted to higher speeds. Consequently, Japan had a greater need for new high-speed lines than countries where the existing standard gauge or broad gauge rail system had more upgrade potential.

Among the key people credited with the construction of the first Shinkansen are Hideo Shima, the Chief Engineer, and Shinji Sogō, the first President of Japanese National Railways (JNR) who managed to persuade politicians to back the plan. Other significant people responsible for its technical development were Tadanao Miki, Tadashi Matsudaira, and Hajime Kawanabe based at the Railway Technology Research Institute (RTRI), part of JNR. They were responsible for much of the technical development of the first line, the Tōkaidō Shinkansen. All three had worked on aircraft design during World War II.

Early proposals
The popular English name bullet train is a literal translation of the Japanese term dangan ressha (弾丸列車), a nickname given to the project while it was initially being discussed in the 1930s. The name stuck because of the original 0 Series Shinkansen’s resemblance to a bullet and its high speed.

The Shinkansen name was first formally used in 1940 for a proposed standard gauge passenger and freight line between Tokyo and Shimonoseki that would have used steam and electric locomotives with a top speed of 200 km/h (120 mph). Over the next three years, the Ministry of Railways drew up more ambitious plans to extend the line to Beijing (through a tunnel to Korea) and even Singapore, and build connections to the Trans-Siberian Railway and other trunk lines in Asia. These plans were abandoned in 1943 as Japan’s position in World War II worsened. However, some construction did commence on the line; several tunnels on the present-day Shinkansen date to the war-era project.

Construction
Following the end of World War II, high-speed rail was forgotten for several years while traffic of passengers and freight steadily increased on the conventional Tōkaidō Main Line along with the reconstruction of Japanese industry and economy. By the mid-1950s the Tōkaidō Line was operating at full capacity, and the Ministry of Railways decided to revisit the Shinkansen project. In 1957, Odakyu Electric Railway introduced its 3000 series SE Romancecar train, setting a world speed record of 145 km/h (90 mph) for a narrow gauge train. This train gave designers the confidence that they could safely build an even faster standard gauge train. Thus the first Shinkansen, the 0 series, was built on the success of the Romancecar.

In the 1950s, the Japanese national attitude was that railways would soon be outdated and replaced by air travel and highways as in America and many countries in Europe. However, Shinji Sogō, President of Japanese National Railways, insisted strongly on the possibility of high-speed rail, and the Shinkansen project was implemented.

Government approval came in December 1958, and construction of the first segment of the Tōkaidō Shinkansen between Tokyo and Osaka started in April 1959. The cost of constructing the Shinkansen was at first estimated at nearly 200 billion yen, which was raised in the form of a government loan, railway bonds and a low-interest loan of US$80 million from the World Bank. Initial cost estimates, however, had been deliberately understated and the actual figures were nearly double at about 400 billion yen. As the budget shortfall became clear in 1963, Sogo resigned to take responsibility.

A test facility for rolling stock, now part of the line, opened in Odawara in 1962.

Initial success
The Tōkaidō Shinkansen began service on 1 October 1964, in time for the first Tokyo Olympics. The conventional Limited Express service took six hours and 40 minutes from Tokyo to Osaka, but the Shinkansen made the trip in just four hours, shortened to three hours and ten minutes by 1965. It enabled day trips between Tokyo and Osaka, the two largest metropolises in Japan, changed the style of business and life of the Japanese people significantly, and increased new traffic demand. The service was an immediate success, reaching the 100 million passenger mark in less than three years on 13 July 1967, and one billion passengers in 1976. Sixteen-car trains were introduced for Expo ’70 in Osaka. With an average of 23,000 passengers per hour in each direction in 1992, the Tōkaidō Shinkansen was the world’s busiest high-speed rail line. As of 2014, the train’s 50th anniversary, daily passenger traffic had risen to 391,000 which, spread out over its 18-hour schedule, represented an average of just under 22,000 passengers an hour.

The first Shinkansen trains, the 0 series, ran at speeds of up to 210 km/h (130 mph), later increased to 220 km/h (137 mph). The last of these trains, with their classic bullet-nosed appearance, were retired on 30 November 2008. A driving car from one of the 0 series trains was donated by JR West to the National Railway Museum in York, England in 2001.

Network expansion
The Tōkaidō Shinkansen’s rapid success prompted an extension westward to Okayama, Hiroshima and Fukuoka (the Sanyō Shinkansen), which was completed in 1975. Prime Minister Kakuei Tanaka was an ardent supporter of the Shinkansen, and his government proposed an extensive network paralleling most existing trunk lines. Two new lines, the Tōhoku Shinkansen and Jōetsu Shinkansen, were built following this plan. Many other planned lines were delayed or scrapped entirely as JNR slid into debt throughout the late 1970s, largely because of the high cost of building the Shinkansen network. By the early 1980s, the company was practically insolvent, leading to its privatization in 1987.

Development of the Shinkansen by the privatised regional JR companies has continued, with new train models developed, each generally with its own distinctive appearance (such as the 500 series introduced by JR West). Since 2014, shinkansen trains run regularly at speeds up to 320 km/h (200 mph), placing them alongside the French TGV and German ICE as the fastest trains in the world.

Since 1970, development has also been underway for the Chūō Shinkansen, a planned maglev line from Tokyo to Osaka. On 21 April 2015, a seven-car L0 series maglev trainset set a world speed record of 603 km/h (375 mph).

Technology
To enable high-speed operation Shinkansen uses a range of advanced technology compared with conventional rail, achieving not only high speed but also a high standard of safety and comfort. Its success has influenced other railways in the world and the importance and advantage of high-speed rail has consequently been reevaluated.

Routing
Shinkansen routes are completely separate from conventional rail lines (except Mini-shinkansen which goes through to conventional lines). Consequently, the shinkansen is not affected by slower local or freight trains (except for Hokkaido Shinkansen while traveling through the Seikan Tunnel), and has the capacity to operate many high-speed trains punctually. The lines have been built without road crossings at grade. Tracks are strictly off-limits with penalties against trespassing strictly regulated by law. It uses tunnels and viaducts to go through and over obstacles rather than around them, with a minimum curve radius of 4,000 meters (2,500 meters on the oldest Tōkaidō Shinkansen).

Track
The Shinkansen uses 1,435 mm (4 ft 8 1⁄2 in) standard gauge in contrast to the 1,067 mm (3 ft 6 in) narrow gauge of older lines. Continuous welded rail and swingnose crossing points are employed, eliminating gaps at turnouts and crossings. Long rails are used, joined by expansion joints to minimize gauge fluctuation due to thermal elongation and shrinkage.

A combination of ballasted and slab track is used, with slab track exclusively employed on concrete bed sections such as viaducts and tunnels. Slab track is significantly more cost-effective in tunnel sections, since the lower track height reduces the cross-sectional area of the tunnel, thereby reducing construction costs by up to 30%. However, the smaller diameter of Shinkansen tunnels compared to some other high-speed lines has resulted in the issue of tunnel boom becoming a concern for residents living close to tunnel portals.

The slab track consists of rails, fasteners and track slabs with a cement asphalt mortar. On the roadbed and in tunnels, circular upstands (measuring 400–520 mm in diameter and 200 mm high) are located at 5 metre intervals. The prefabricated upstands are made of either reinforced concrete or pre-stressed reinforced concrete; they prevent the track slab from moving along either the latitudinal or the longitudinal directions. One track slab weighs approximately 5 tons, measuring 2220–2340 mm wide, 4900–4950 mm long and 160–200 mm thick.

Signal system
The Shinkansen employs an ATC (Automatic Train Control) system, eliminating the need for trackside signals. It uses a comprehensive system of Automatic Train Protection. Centralized traffic control manages all train operations, and all tasks relating to train movement, track, station and schedule are networked and computerized.

Electrical systems
Shinkansen uses a 25kV AC overhead power supply (20 kV AC on Mini-shinkansen lines), to overcome the limitations of the 1,500 V direct current used on the existing electrified narrow-gauge system. Power is distributed along the axles of the train to reduce the heavy axle loads under single power cars. The AC frequency of the power supply for the Tokaido Shinkansen is 60 Hz.

Trains
Shinkansen trains are electric multiple units, offering fast acceleration, deceleration and reduced damage to the track because of the use of lighter vehicles compared to locomotives or power cars. The coaches are air-sealed to ensure stable air pressure when entering tunnels at high speed.

Punctuality
The Shinkansen is very reliable thanks to several factors, including its near-total separation from slower traffic. In 2016, JR Central reported that the Shinkansen’s average delay from schedule per train was 24 seconds. This includes delays due to uncontrollable causes, such as natural disasters. The record, in 1997, was 18 seconds.

Traction
The Shinkansen has used the electric multiple unit configuration from the outset, with the 0 Series Shinkansen having all axles powered. Other railway manufacturers were traditionally reluctant, or unable to use distributed traction configurations (e.g. Talgo used the locomotive configuration with the AVE Class 102 and continues with it for the Talgo AVRIL on account of the fact that it is not possible to use powered bogies as part of the Talgo Pendular system). In Japan, significant engineering desirability exists for the electric multiple unit configuration. A greater proportion of motored axles results in higher acceleration, meaning that the Shinkansen does not lose as much time if stopping frequently. Shinkansen lines have more stops in proportion to their lengths than high-speed lines elsewhere in the world.

Safety record
Over the Shinkansen’s 50-plus year history, carrying over 10 billion passengers, there have been no passenger fatalities due to derailments or collisions, despite frequent earthquakes and typhoons. Injuries and a single fatality have been caused by doors closing on passengers or their belongings; attendants are employed at platforms to prevent such accidents. There have, however, been suicides by passengers jumping both from and in front of moving trains. On 30 June 2015, a passenger committed suicide on board a Shinkansen train by setting himself on fire, killing another passenger and seriously injuring seven other people.

There have been two derailments of Shinkansen trains in passenger service. The first one occurred during the Chūetsu earthquake on 23 October 2004. Eight of ten cars of the Toki No. 325 train on the Jōetsu Shinkansen derailed near Nagaoka Station in Nagaoka, Niigata. There were no casualties among the 154 passengers.

Another derailment happened on 2 March 2013 on the Akita Shinkansen when the Komachi No. 25 train derailed in blizzard conditions in Daisen, Akita. No passengers were injured.

In the event of an earthquake, an earthquake detection system can bring the train to a stop very quickly, newer trainsets are lighter and have stronger braking systems, allowing for quicker stopping. A new anti-derailment device was installed after detailed analysis of the Jōetsu derailment.

Several months after the expose of the Kobe Steel falsification scandal, which is among the suppliers of high-strength steel for shinkansen trainsets, cracks were found upon inspection of a single bogie, and removed from service on 11 December 2017.

Economics
The Shinkansen has had a significant beneficial effect on Japan’s business, economy, society, environment and culture in ways beyond mere construction and operation contributions. The results in time savings alone from switching from a conventional to a high-speed network have been estimated at 400 million hours, and the system has an economic impact of ¥500 billion per year. That does not include the savings from reduced reliance on imported fuel, which also has national security benefits. Shinkansen lines, particularly in the very crowded coastal Taiheiyō Belt megalopolis, met two primary goals:

Shinkansen trains reduced the congestion burden on regional transportation by increasing throughput on a minimal land footprint, therefore being economically preferable compared to modes (such as airports or highways) common in less densely populated regions of the world.
As rail was already the primary urban mode of passenger travel, from that perspective it was akin to a sunk cost; there was not a significant number of motorists to convince to switch modes. The initial megalopolitan Shinkansen lines were profitable and paid for themselves. Connectivity rejuvenated rural towns such as Kakegawa that would otherwise be too distant from major cities.
However, the initial Shinkansen prudence gave way to political considerations to extend the mode to far less populated regions of the country, partly to spread these benefits beyond the key centres of Kanto and Kinki. In some areas regional extension was frustrated by protracted land acquisition issues, sometimes influenced by fierce protests from locals against expanding Narita airport’s runways to handle more traffic that extended well into the 2000s. Tokyo’s airports were already at or near capacity and there was no room for another civilian airport given the geography and required US military presence. Shinkansen lines were extended to sparsely populated areas with the intent the network would disperse the population away from the capital.

Such expansion had a significant cost. JNR, the national railway company, was already burdened with subsidizing unprofitable rural and regional railways. Additionally it assumed Shinkansen construction debt to the point the government corporation eventually owed some ¥28 trillion, contributing to it being regionalised and privatized. The privatized JRs eventually paid a total of ¥9.2 trillion to acquire JNR’s Shinkansen network.

After privatization, the Shinkansen network continues to see significant expansion to less populated areas, but with far more flexibility to spin off unprofitable railways or cut costs than in JNR days. Currently an important factor is the post bubble zero interest-rate policy that allows JR to borrow huge sums of capital without significant concern regarding repayment timing.

Environmental impact
Traveling by the Tokaido Shinkansen from Tokyo to Osaka produces only around 16% of the carbon dioxide of the equivalent journey by car, a saving of 15,000 tons of CO2 per year.

Challenges encountered
Noise pollution
Noise pollution concerns mean that increasing speed is becoming more difficult. In Japan, the population density is high and there have been severe protests against the Shinkansen’s noise pollution, meaning that its noise is now limited to less than 70 dB in residential areas. Hence, improvement and reduction of the pantograph, weight saving of cars, and construction of noise barriers and other measures have been implemented. Current research is primarily aimed at reducing operational noise, particularly the tunnel boom phenomenon caused when trains transit tunnels at high speed.

Earthquake
Because of the risk of earthquakes, the Urgent Earthquake Detection and Alarm System (UrEDAS) (earthquake warning system) was introduced in 1992. It enables automatic braking of bullet trains in the case of large earthquakes.

Heavy snow
The Tōkaidō Shinkansen often experiences heavy snow in the area around Maibara Station in winter. Trains have to reduce speed, which can disrupt the timetable. Sprinkler systems were later installed, but delays of 10 to 20 minutes still occur during snowy weather. Additionally, treefalls related to excess snow have caused service interruptions. Along the route of the Jōetsu Shinkansen, winter snow can be very heavy, with snow depths of two to three metres, so the line is equipped with stronger sprinklers and slab track, to mitigate the effects of deep snow.

Future

Speed increases

Tohoku Shinkansen
E5 series trains, capable of up to 320 km/h (200 mph) (initially limited to 300 km/h), were introduced on the Tōhoku Shinkansen in March 2011. Operation at the maximum speed of 320 km/h between Utsunomiya and Morioka on this route commenced on 16 March 2013, and reduced the journey time to around 3 hours for trains from Tokyo to Shin-Aomori (a distance of 674 km (419 mi)).

Extensive trials using the Fastech 360 test trains have shown that operation at 360 km/h (224 mph) is not currently feasible because of problems of noise pollution (particularly tunnel boom), overhead wire wear, and braking distances. On 30 October 2012, JR East announced that it is pursuing research and development to increase speeds to 360 km/h on the Tohoku Shinkansen by 2020.

Hokkaido Shinkansen
As of 2016, the maximum speed on the approximately 82 km dual gauge section of the Hokkaido Shinkansen (including through the Seikan Tunnel) is 140 km/h (85 mph). There are approximately 50 freight trains using the dual gauge section each day, so limiting the travel of such trains to times outside of Shinkansen services is not an option. Because of this and other weather-related factors cited by JR East and JR Hokkaido, the fastest journey time between Tokyo and Shin-Hakodate-Hokuto is currently 4 hours, 2 minutes. The new section takes 61 minutes from Shin-Aomori to Shin-Hakodate-Hokuto on the fastest services.

By 2018, it is proposed to allow one Shinkansen service each day to travel at 260 km/h (160 mph) (the maximum speed proposed for the tunnel) by ensuring no freight trains are scheduled to travel on the dual gauge section at that time. To achieve the full benefit of Shinkansen trains travelling on the dual gauge section at 260 km/h (160 mph), other alternatives are being considered, such as a system to automatically slow Shinkansen trains down to 200 km/h (125 mph) when passing narrow-gauge trains, and loading freight trains onto special “Train on Train” standard-gauge trains (akin to a covered piggyback flatcar train) built to withstand the shock wave of oncoming Shinkansen trains traveling at full speed. This would enable a travel time from Tokyo to Shin-Hakodate-Hokuto of 3 hours and 45 minutes, a saving of 17 minutes on the current timetable.

Hokuriku extension
The Hokuriku Shinkansen is being extended from Kanazawa to Tsuruga (proposed for completion by 2023) at an estimated cost of 3.04 trillion yen (in 2012 currency).

There are further plans to extend the line from Tsuruga to Osaka, with the ‘Obama-Kyoto’ route chosen by the government on 20 December 2016, after a government committee investigated the five nominated routes. The five routes that were under investigation are detailed in the Hokuriku Shinkansen page.

Construction of the extension beyond Tsuruga is not expected to commence before 2030, with a projected 15 year construction period. On 6 March 2017 the government committee announced the chosen route from Kyoto to Shin-Osaka is to be via Kyotanabe, with a station at Matsuiyamate on the Katamachi Line.

Interim plans
In order to extend the benefits of the Hokuriku Shinkansen to stations west of Tsuruga before the line to Osaka is completed, JR West is working in partnership with Talgo on the development of a Gauge Change Train (CGT), which will be capable of operating under both the 25 kV AC electrification used on the Shinkansen and the 1.5 kV DC system employed on conventional lines. The six-car train is due to start trials on the Hokuriku Shinkansen and the 1067 mm-gauge Hokuriku and Kosei lines in 2017. As part of the project JR West has already begun trials with a purpose-built 180-metre-long gauge-changer at Tsuruga.

Tohoku extension/Hokkaido Shinkansen
The Hokkaido Shinkansen forms an extension of the Tohoku Shinkansen north of Shin-Aomori to Shin-Hakodate-Hokuto Station (north of the Hokkaido city of Hakodate) through the Seikan Tunnel, which was converted to dual gauge as part of the project, opening in March 2016.

JR Hokkaido is extending the Hokkaido Shinkansen from Shin-Hakodate-Hokuto to Sapporo to open by March 2031, with tunnelling work on the 5,265 m Murayama tunnel, situated about 1 km north of Shin-Hakodate-Hokuto Station, commencing in March 2015, and due to be completed by March 2021. The 211.3 km extension will be approximately 76% in tunnels, including major tunnels such as Oshima (~26.5 km), Teine (~18.8 km) and Shiribeshi (~18 km).

Although an extension from Sapporo to Asahikawa was included in the 1973 list of planned lines, at this time it is unknown whether the Hokkaido Shinkansen will be extended beyond Sapporo.

Nagasaki Shinkansen
JR Kyushu is constructing an extension (to be known as the West Kyushu Shinkansen) line of the Kyushu Shinkansen to Nagasaki, partly to full Shinkansen standard gauge construction standards (Takeo Onsen – Nagasaki) with the existing narrow gauge section between Shin-Tosu and Takeo Onsen to be upgraded as part of this project.

This proposal initially involved introducing Gauge Change Trains (GCT) travelling from Hakata to Shin-Tosu (26.3 km) on the existing Kyushu Shinkansen line, then passing through a specific gauge changing (standard to narrow) section of track linking to the existing Nagasaki Main Line, along which it would travel to Hizen Yamaguchi (37.6 km), then onto the Sasebo Line to Takeo Onsen (13.7 km), where another gauge changing section (narrow to standard) would lead onto the final Shinkansen line to Nagasaki (66.7 km). However, technical issues with the development of the GCT bogies means the train will not be available for service until at least 2025, requiring consideration of other options such as ‘relay’ service to ensure the line can open on schedule in 2023.

Maglev (Chuo Shinkansen)
Maglev trains have been undertaking test runs on the Yamanashi test track since 1997, running at speeds of over 500 km/h (310 mph). As a result of this extensive testing, maglev technology is almost ready for public usage. An extension of this test track from 18.4 km to 42.8 km was completed in June 2013, enabling extended high-speed running trials to commence in August 2013. This section will be incorporated into the Chūō Shinkansen which will eventually link Tokyo to Osaka. Construction of the Shinagawa to Nagoya section began in 2014, with 86% of the 286 km route to be in tunnels.

The route for the Nagoya to Osaka section is also contested. It is planned to go via Nara, about 40 km south of Kyoto. Kyoto is lobbying to have the route moved north and be largely aligned with the existing Tokaido Shinkansen, which services Kyoto and not Nara.

Mini-Shinkansen
Mini-shinkansen (ミニ新幹線) is the name given to the routes where former narrow gauge lines have been converted to standard gauge to allow Shinkansen trains to travel to cities without the expense of constructing full Shinkansen standard lines.

Two mini-shinkansen routes have been constructed: the Yamagata Shinkansen and Akita Shinkansen. Shinkansen services to these lines traverse the Tohoku Shinkansen line from Tokyo before branching off to traditional main lines. On both the Yamagata/Shinjo and Akita lines, the narrow gauge lines were regauged, resulting in the local services being operated by standard gauge versions of 1,067 mm gauge suburban/interurban rolling stock. On the Akita line between Omagari and Akita, one of the two narrow gauge lines was regauged, and a section of the remaining narrow gauge line is dual gauge, providing the opportunity for Shinkansen services to pass each other without stopping.

Gauge Change Train
This is the name for the concept of using a single train that is specially designed to travel on both 1,067 mm (3 ft 6 in) narrow gauge railway lines and the 1,435 mm (4 ft 8 1⁄2 in) standard gauge used by Shinkansen train services in Japan. The trucks/bogies of the Gauge Change Train (GCT) allow the wheels to be unlocked from the axles, narrowed or widened as necessary, and then relocked. This allows a GCT to traverse both standard gauge and narrow gauge tracks without the expense of regauging lines.

A new “full standard” Shinkansen line is under construction from Takeo Onsen to Nagasaki, with the Shin-Tosu – Takeo Onsen section of the Kyushu Shinkansen branch to remain narrow gauge. GCTs were proposed to provide the Shinkansen service from the line’s scheduled opening in March 2023, however with the GCT now being unavailable for service until at least 2025, other options are being considered, such as a ‘relay’ service.

Competition with airline
Compared with air transport, the Shinkansen has several advantages, including scheduling frequency and flexibility, punctual operation, comfortable seats, and convenient city-center terminals.

Shinkansen fares are generally competitive with domestic air fares. From a speed and convenience perspective, the Shinkansen’s market share has surpassed that of air travel for journeys of less than 750 km, while air and rail remain highly competitive with each other in the 800–900 km range and air has a higher market share for journeys of more than 1,000 km.

Source from Wikipedia