Photovoltaics economic

Worldwide growth of photovoltaics has been an exponential curve between 1992–2017. During this period of time, photovoltaics (PV), also known as solar PV, evolved from a niche market of small scale applications to a mainstream electricity source. When solar PV systems were first recognized as a promising renewable energy technology, programs, such as feed-in tariffs, were implemented by a number of governments in order to provide economic incentives for investments. For several years, growth was mainly driven by Japan and pioneering European countries. As a consequence, cost of solar declined significantly due to experience curve effects like improvements in technology and economies of scale.

Experience curves describe that the price of a thing decreases with the sum-total ever produced. PV growth increased even more rapidly when production of solar cells and modules started to ramp up in the USA with their Million Solar Roofs project, and when renewables were added to China’s 2011 five-year-plan for energy production. Since then, deployment of photovoltaics has gained momentum on a worldwide scale, particularly in Asia but also in North America and other regions, where solar PV by 2015–17 was increasingly competing with conventional energy sources as grid parity has already been reached in about 30 countries.

Projections for photovoltaic growth are difficult and burdened with many uncertainties. Official agencies, such as the International Energy Agency consistently increased their estimates over the years, but still fell short of actual deployment.

Historically, the United States was the leader of installed photovoltaics for many years, and its total capacity amounted to 77 megawatts in 1996—more than any other country in the world at the time. Then, Japan was the world’s leader of produced solar electricity until 2005, when Germany took the lead and by 2016 had a capacity of over 40 gigawatts. However, in 2015, China became world’s largest producer of photovoltaic power, and in 2017 became the first country to surpass the 100 GW of cumulative installed PV capacity. China is expected to be the leader in installed PV capacity, and along with India and US, it is forecasted to be the largest market for solar PV installations in the coming decade.

By the end of 2016, cumulative photovoltaic capacity reached about 302 gigawatts (GW), estimated to be sufficient to supply between 1.3% and 1.8% of global electricity demand. Solar contributed 8%, 7.4% and 7.1% to the respective annual domestic consumption in Italy, Greece and Germany. The European Photovoltaic Industry Association, a solar industry trade group, claims installed worldwide capacity will more than double or even triple to more than 500 GW between 2016 and 2020; by 2050, it claims solar power will become the world’s largest source of electricity. Such an achievement would require PV capacity to grow to 4,600 GW, of which more than half was forecast to be deployed in China and India.

Current status
Nameplate capacity denotes the peak power output of power stations in unit watt prefixed as convenient, to e.g. kilowatt (kW), megawatt (MW) and gigawatt (GW). Because power output for variable renewable sources is unpredictable, however, using nameplate capacity as a metric significantly overstates a source’s average generation. Thus, capacity is typically multiplied by a suitable capacity factor, which takes into account varying conditions – weather, nighttime, latitude, maintenance, etc. to give energy planners an idea of a source’s value to the public. In addition, depending on context, the stated peak power may be prior to a subsequent conversion to alternating current, e.g. for a single photovoltaic panel, or include this conversion and its loss for a grid connected photovoltaic power station. Worldwide, the average solar PV capacity factor is 11%.

Wind power has different characteristics, e.g. a higher capacity factor and about four times the 2015 electricity production of solar power. Compared with wind power, photovoltaic power production correlates well with power consumption for air-conditioning in warm countries. As of 2017 a handful of utilities have started combining PV installations with battery banks, thus obtaining several hours of dispatchable generation to help mitigate problems associated with the duck curve after sunset.

For a complete history of deployment over the last two decades, also see section History of deployment.

In 2016, photovoltaic capacity increased by at least 75 GW, with a 50% growth year-on-year of new installations. Cumulative installed capacity reached at least 302 GW by the end of the year, sufficient to supply 1.8 percent of the world’s total electricity consumption.

In 2014, Asia was the fastest growing region, with more than 60% of global installations. China and Japan alone accounted for 20 GW or half of worldwide deployment. Europe continued to decline and installed 7 GW or 18% of the global PV market, three times less than in the record-year of 2011, when 22 GW had been installed. For the first time, North and South America combined accounted for at least as much as Europe, about 7.1 GW or about 18% of global total. This was due to the strong growth in the United States, supported by Canada, Chile and Mexico.

In terms of cumulative capacity, Europe was still the most developed region with 88 GW or half of the global total of 178 GW. Solar PV covered 3.5% and 7% of European electricity demand and peak electricity demand, respectively in 2014.The Asia-Pacific region (APAC) which includes countries such as Japan, India and Australia, followed second and accounted for about 20% percent of worldwide capacity. China was third with 16%, followed by the Americas with about 12%. Cumulative capacity in the MEA (Middle East and Africa) region and ROW (rest of the world) accounted for only about 3.3% of the global total.

Worldwide growth of photovoltaics is extremely dynamic and varies strongly by country. The top installers of 2016 were China, the United States, and India. There are more than 24 countries around the world with a cumulative PV capacity of more than one gigawatt. Austria, Chile, and South Africa, all crossed the one gigawatt-mark in 2016. The available solar PV capacity in Honduras is now sufficient to supply 12.5% of the nation’s electrical power while Italy, Germany and Greece can produce between 7% and 8% of their respective domestic electricity consumption.

Leading PV deployments in 2016 were China (34.5 GW), United States (14.7 GW), Japan (8.6 GW), India (4 GW), the United Kingdom (2 GW).

Forecast for 2017
On December 19, 2016, IHS Markit forecast that global new installations would reach 79 GW, representing 3% growth. In July 2017 the SolarPower Europe Association predicted 80.5 GW installed capacity (medium scenario) with a spread ranging from 58.5 GW (low scenario) to 103.6 GW (high scenario). On August 21, 2017, Greentech Media predicted that the global solar market will grow about 4% in 2017, reaching 81.1 GW, after 2016 saw a total of 77.8 GW. On September 14, 2017, EnergyTrend predicted the global solar market in 2017 will reach 100.4 GW, an increase about 26% over previous year.

Global short-term forecast
In August 2017, GTM Research predicted that by 2022 cumulative installed global photovoltaic capacity will likely reach 871 gigawatts.

Global long-term forecast (2050)
In 2014, the International Energy Agency (IEA) released its latest edition of the Technology Roadmap: Solar Photovoltaic Energy report, calling for clear, credible and consistent signals from policy makers. The IEA also acknowledged to have previously underestimated PV deployment and reassessed its short-term and long-term goals.

IEA report Technology Roadmap: Solar Photovoltaic Energy (September 2014)—

Much has happened since our 2010 IEA technology roadmap for PV energy. PV has been deployed faster than anticipated and by 2020 will probably reach twice the level previously expected. Rapid deployment and falling costs have each been driving the other. This progress, together with other important changes in the energy landscape, notably concerning the status and progress of nuclear power and CCS, have led the IEA to reassess the role of solar PV in mitigating climate change. This updated roadmap envisions PV’s share of global electricity rising up to 16% by 2050, compared with 11% in the 2010 roadmap.
IEA’s long-term scenario for 2050 described how worldwide solar photovoltaics (PV) and concentrated solar thermal (CSP) capacity would reach 4,600 GW and 1,000 GW, respectively. In order to achieve IEA’s projection, PV deployment of 124 GW and investments of $225 billion were required annually. This was about three and two times levels at that time, respectively. By 2050, levelized cost of electricity (LCOE) generated by solar PV would cost between US 4¢ and 16¢ per kilowatt-hour (kWh), or by segment and on average, 5.6¢ per kWh for utility-scale power plants (range of 4¢ to 9.7¢), and 7.8¢ per kWh for solar rooftop systems (range of 4.9¢ to 15.9¢)24 These estimates were based on a weighted average cost of capital (WACC) of 8%. The report noted that when the WACC exceeds 9%, over half the LCOE of PV is made of financial expenditures, and that more optimistic assumptions of a lower WACC would therefore significantly reduce the LCOE of solar PV in the future.–25 The IEA also emphasized that these new figures were not projections but rather scenarios they believe would occur if underlying economic, regulatory and political conditions played out.

In 2015, Fraunhofer ISE did a study commissioned by German renewable think tank Agora Energiewende and concluded that most scenarios fundamentally underestimate the role of solar power in future energy systems. Fraunhofer’s study (see summary of its conclusions below) differed significantly from IEA’s roadmap report on solar PV technology despite being published only a few months apart. The report foresaw worldwide installed PV capacity would reach as much as 30,700 GW by 2050. By then, Fraunhofer expected LCOE for utility-scale solar farms to reach €0.02 to €0.04 per kilowatt-hour, or about half of what the International Energy Agency had been projecting (4¢ to 9.7¢). Turnkey system costs would decrease by more than 50% to €436/kWp from currently €995/kWp. This is also noteworthy, as IEA’s roadmap published significantly higher estimates of $1,400 to $3,300 per kWp for eight major markets around the world (see table Typical PV system prices in 2013 below). However, the study agreed with IEA’s roadmap report by emphasizing the importance of the cost of capital (WACC), which strongly depends on regulatory regimes and may even outweigh local advantages of higher solar insolation. 53 In the study, a WACC of 5%, 7.5% and 10% was used to calculate the projected levelized cost of electricity for utility-scale solar PV in 18 different markets worldwide.

Fraunhofer ISE: Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. Study on behalf of Agora Energiewende (February 2015)—

Solar photovoltaics is already today a low-cost renewable energy technology. Cost of power from large scale photovoltaic installations in Germany fell from over 40 ct/kWh in 2005 to 9 cts/kWh in 2014. Even lower prices have been reported in sunnier regions of the world, since a major share of cost components is traded on global markets.
Solar power will soon be the cheapest form of electricity in many regions of the world. Even in conservative scenarios and assuming no major technological breakthroughs, an end to cost reduction is not in sight. Depending on annual sunshine, power cost of 4–6 cts/kWh are expected by 2025, reaching 2–4 ct/kWh by 2050 (conservative estimate).
Financial and regulatory environments will be key to reducing cost in the future. Cost of hardware sourced from global markets will decrease irrespective of local conditions. However, inadequate regulatory regimes may increase cost of power by up to 50 percent through higher cost of finance. This may even overcompensate the effect of better local solar resources.
Most scenarios fundamentally underestimate the role of solar power in future energy systems. Based on outdated cost estimates, most scenarios modeling future domestic, regional or global power systems foresee only a small contribution of solar power. The results of our analysis indicate that a fundamental review of cost-optimal power system pathways is necessary.

Regional forecasts

As of October 2015, China planned to install 150 GW of solar power by 2020, an increase of 50 GW compared to the 2020-target announced in October 2014, when China planned to install 100 GW of solar power—along with 200 GW of wind, 350 GW of hydro and 58 GW of nuclear power.
Overall, China has consistently increased its annual and short term targets. However estimates, targets and actual deployment have differed substantially in the past: in 2013 and 2014, China was expected to continue to install 10 GW per year. In February 2014, China’s NDRC upgraded its 2014 target from 10 GW to 14 GW (later adjusted to 13 GW) and ended up installing an estimated 10.6 GW due to shortcomings in the distributed PV sector.

The country planned to install 100 GW capacity of solar power by 2022, a five-time increase from a previous target.

Japan has a target of 53 GW of solar PV capacity by 2030, and 10% of total domestic primary energy demand met with solar PV by 2050. The 2030 target was reached in 2018.

By 2020, the European Photovoltaic Industry Association (EPIA) expected PV capacity to pass 150 GW. It found the EC-supervised national action plans for renewables (NREAP) were too conservative, as the goal of 84 GW of solar PV by 2020 had already been surpassed in 2014 – preliminary figures accounted for close to 88 GW by the end of 2014. For 2030, EPIA originally predicted solar PV would reach between 330 and 500 GW, supplying 10 to 15 percent of Europe’s electricity demand. However, later reassessments were more pessimistic and foreacst a 7 to 11 percent share, if no major policy changes are undertaken.

In the world, the photovoltaic market has been created by the electrification needs of systems isolated from the network such as satellites, boats, caravans and other mobile objects (watches, calculators…), or isolated sites and instrumentation. The progress of photovoltaic cell production techniques has led, since the 1990s, to a fall in prices, which made it possible to envisage, with various state subsidies, a mass production for the electricity grid, a production that could be extended to self-consumed production integrated in smart grids, from walls and roofs and in the perspective of clean and decentralized energy, via servicespossibly shared as those advocated by Jeremy Rifkin in his concept of third industrial revolution.

The photovoltaic industry directly employed around 435,000 people worldwide in 2012, including 265,000 people in Europe, according to the EPIA; nearly one million jobs indirectly depend on this sector, including 700,000 in the installation, maintenance and recycling of PV systems; EPIA scenarios foresee up to 1 million job creations in Europe by 2020. The production of a MWC induces the creation of 3 to 7 full-time equivalent direct jobs and 12 to 20 indirect jobs.

The photovoltaic sector would represent between 20,000 and 35,000 jobs in France, located ” down the value chain (project development, installation…) ” and not in the most innovative part (research, manufacturing). A study by the SIA Board office, a job in photovoltaics would cost 10 to 40% more expensive than the compensation of an unemployed. The photovoltaic moratorium in France, which lasted from December 2010 to March 2011, could lead to more than 5,000 job cuts.

History of market development

Prices and costs (1977–present)
The average price per watt dropped drastically for solar cells in the decades leading up to 2017. While in 1977 prices for crystalline silicon cells were about $77 per watt, average spot prices in August 2018 were as low as $0.13 per watt or nearly 600 times less than forty years ago. Prices for thin-film solar cells and for c-Si solar panels were around $.60 per watt. Module and cell prices declined even further after 2014 (see price quotes in table).

This price trend was seen as evidence supporting Swanson’s law (an observation similar to the famous Moore’s Law) that states that the per-watt cost of solar cells and panels fall by 20 percent for every doubling of cumulative photovoltaic production. A 2015 study showed price/kWh dropping by 10% per year since 1980, and predicted that solar could contribute 20% of total electricity consumption by 2030.

In its 2014 edition of the Technology Roadmap: Solar Photovoltaic Energy report, the International Energy Agency (IEA) published prices for residential, commercial and utility-scale PV systems for eight major markets as of 2013 (see table below). However, DOE’s SunShot Initiative report states lower prices than the IEA report, although both reports were published at the same time and referred to the same period. After 2014 prices fell further. For 2014, the SunShot Initiative modeled U.S. system prices to be in the range of $1.80 to $3.29 per watt. Other sources identified similar price ranges of $1.70 to $3.50 for the different market segments in the U.S. In the highly penetrated German market, prices for residential and small commercial rooftop systems of up to 100 kW declined to $1.36 per watt (€1.24/W) by the end of 2014. In 2015, Deutsche Bank estimated costs for small residential rooftop systems in the U.S. around $2.90 per watt. Costs for utility-scale systems in China and India were estimated as low as $1.00 per watt.As of May 2017, a residential 5 kW-system in Australia cost on average about AU$1.25, or US$0.93 per watt.

Technologies (1990–present)
There were significant advances in conventional crystalline silicon (c-Si) technology in the years leading up to 2017. The falling cost of the polysilicon since 2009, that followed after a period of severe shortage (see below) of silicon feedstock, pressure increased on manufacturers of commercial thin-film PV technologies, including amorphous thin-film silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS), lead to the bankruptcy of several thin-film companies that had once been highly touted. The sector faced price competition from Chinese crystalline silicon cell and module manufacturers, and some companies together with their patents were sold below cost.

In 2013 thin-film technologies accounted for about 9 percent of worldwide deployment, while 91 percent was held by crystalline silicon (mono-Si and multi-Si). With 5 percent of the overall market, CdTe held more than half of the thin-film market, leaving 2 percent to each CIGS and amorphous silicon.–25

CIGS technology
Copper indium gallium selenide (CIGS) is the name of the semiconductor material on which the technology is based. One of the largest producers of CIGS photovoltaics in 2015 was the Japanese company Solar Frontier with a manufacturing capacity in the gigawatt-scale. Their CIS line technology included modules with conversion efficiencies of over 15%. The company profited from the booming Japanese market and attempted to expand its international business. However, several prominent manufacturers could not keep up with the advances in conventional crystalline silicon technology. The company Solyndra ceased all business activity and filed for Chapter 11 bankruptcy in 2011, and Nanosolar, also a CIGS manufacturer, closed its doors in 2013. Although both companies produced CIGS solar cells, it has been pointed out, that the failure was not due to the technology but rather because of the companies themselves, using a flawed architecture, such as, for example, Solyndra’s cylindrical substrates.

CdTe technology
The U.S.-company First Solar, a leading manufacturer of CdTe, built several of the world’s largest solar power stations, such as the Desert Sunlight Solar Farm and Topaz Solar Farm, both in the Californian desert with 550 MW capacity each, as well as the 102 MWAC Nyngan Solar Plant in Australia (the largest PV power station in the Southern Hemisphere at the time) commissioned in mid-2015. The company was reported in 2013 to be successfully producing CdTe-panels with a steadily increasing efficiency and declining cost per watt.–19 CdTe was the lowest energy payback time of all mass-produced PV technologies, and could be as short as eight months in favorable locations. The company Abound Solar, also a manufacturer of cadmium telluride modules, went bankrupt in 2012.

a-Si technology
In 2012, ECD solar, once one of the world’s leading manufacturer of amorphous silicon (a-Si) technology, filed for bankruptcy in Michigan, United States. Swiss OC Oerlikon divested its solar division that produced a-Si/μc-Si tandem cells to Tokyo Electron Limited. In 2014, the Japanese electronics and semiconductor company announced the closure of its micromorph technology development program. Other companies that left the amorphous silicon thin-film market include DuPont, BP, Flexcell, Inventux, Pramac, Schuco, Sencera, EPV Solar, NovaSolar (formerly OptiSolar) and Suntech Power that stopped manufacturing a-Si modules in 2010 to focus on crystalline silicon solar panels. In 2013, Suntech filed for bankruptcy in China.

Silicon shortage (2005–2008)
In the early 2000s, prices for polysilicon, the raw material for conventional solar cells, were as low as $30 per kilogram and silicon manufacturers had no incentive to expand production.

However, there was a severe silicon shortage in 2005, when governmental programmes caused a 75% increase in the deployment of solar PV in Europe. In addition, the demand for silicon from semiconductor manufacturers was growing. Since the amount of silicon needed for semiconductors makes up a much smaller portion of production costs, semiconductor manufacturers were able to outbid solar companies for the available silicon in the market.

Initially, the incumbent polysilicon producers were slow to respond to rising demand for solar applications, because of their painful experience with over-investment in the past. Silicon prices sharply rose to about $80 per kilogram, and reached as much as $400/kg for long-term contracts and spot prices. In 2007, the constraints on silicon became so severe that the solar industry was forced to idle about a quarter of its cell and module manufacturing capacity—an estimated 777 MW of the then available production capacity. The shortage also provided silicon specialists with both the cash and an incentive to develop new technologies and several new producers entered the market. Early responses from the solar industry focused on improvements in the recycling of silicon. When this potential was exhausted, companies have been taking a harder look at alternatives to the conventional Siemens process.

As it takes about three years to build a new polysilicon plant, the shortage continued until 2008. Prices for conventional solar cells remained constant or even rose slightly during the period of silicon shortage from 2005 to 2008. This is notably seen as a “shoulder” that sticks out in the Swanson’s PV-learning curve and it was feared that a prolonged shortage could delay solar power becoming competitive with conventional energy prices without subsidies.

In the meantime the solar industry lowered the number of grams-per-watt by reducing wafer thickness and kerf loss, increasing yields in each manufacturing step, reducing module loss, and raising panel efficiency. Finally, the ramp up of polysilicon production alleviated worldwide markets from the scarcity of silicon in 2009 and subsequently lead to an overcapacity with sharply declining prices in the photovoltaic industry for the following years.

Solar overcapacity (2009–2013)
As the polysilicon industry had started to build additional large production capacities during the shortage period, prices dropped as low as $15 per kilogram forcing some producers to suspend production or exit the sector. Prices for silicon stabilized around $20 per kilogram and the booming solar PV market helped to reduce the enormous global overcapacity from 2009 onwards. However, overcapacity in the PV industry continued to persist. In 2013, global record deployment of 38 GW (updated EPIA figure) was still much lower than China’s annual production capacity of approximately 60 GW. Continued overcapacity was further reduced by significantly lowering solar module prices and, as a consequence, many manufacturers could no longer cover costs or remain competitive. As worldwide growth of PV deployment continued, the gap between overcapacity and global demand was expected in 2014 to close in the next few years.

IEA-PVPS published in 2014 historical data for the worldwide utilization of solar PV module production capacity that showed a slow return to normalization in manufacture in the years leading up to 2014. The utilization rate is the ratio of production capacities versus actual production output for a given year. A low of 49% was reached in 2007 and reflected the peak of the silicon shortage that idled a significant share of the module production capacity. As of 2013, the utilization rate had recovered somewhat and increased to 63%.

Anti-dumping duties (2012–present)
After anti-dumping petition were filed and investigations carried out, the United States imposed tariffs of 31 percent to 250 percent on solar products imported from China in 2012. A year later, the EU also imposed definitive anti-dumping and anti-subsidy measures on imports of solar panels from China at an average of 47.7 percent for a two-year time span.

Shortly thereafter, China, in turn, levied duties on U.S. polysilicon imports, the feedstock for the production of solar cells. In January 2014, the Chinese Ministry of Commerce set its anti-dumping tariff on U.S. polysilicon producers, such as Hemlock Semiconductor Corporation to 57%, while other major polysilicon producing companies, such as German Wacker Chemie and Korean OCI were much less affected. All this has caused much controversy between proponents and opponents and was subject of debate.

History of deployment
Deployment figures on a global, regional and nationwide scale are well documented since the early 1990s. While worldwide photovoltaic capacity grew continuously, deployment figures by country were much more dynamic, as they depended strongly on national policies. A number of organizations release comprehensive reports on PV deployment on a yearly basis. They include annual and cumulative deployed PV capacity, typically given in watt-peak, a break-down by markets, as well as in-depth analysis and forecasts about future trends.

Worldwide annual deployment
Due to the exponential nature of PV deployment, most of the overall capacity has been installed in the years leading up to 2017 (see pie-chart). Since the 1990s, each year has been a record-breaking year in terms of newly installed PV capacity, except for 2012. Contrary to some earlier predictions, early 2017 forecasts were that 85 gigawatts would be installed in 2017. Near end-of-year figures however raised estimates to 95 GW for 2017-installations.

Worldwide cumulative
Worldwide growth of solar PV capacity was an exponential curve between 1992 and 2017. Tables below show global cumulative nominal capacity by the end of each year in megawatts, and the year-to-year increase in percent. In 2014, global capacity was expected to grow by 33 percent from 139 to 185 GW. This corresponded to an exponential growth rate of 29 percent or about 2.4 years for current worldwide PV capacity to double. Exponential growth rate: P(t) = P0ert, where P0 is 139 GW, growth-rate r 0.29 (results in doubling time t of 2.4 years).

Source from Wikipedia