Environmental degradation

Environmental degradation is the deterioration of the environment through depletion of resources such as air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. As indicated by the I=PAT equation, environmental impact (I) or degradation is caused by the combination of an already very large and increasing human population (P), continually increasing economic growth or per capita affluence (A), and the application of resource-depleting and polluting technology (T).

Environmental degradation is one of the ten threats officially cautioned by the High-level Panel on Threats, Challenges and Change of the United Nations. The United Nations International Strategy for Disaster Reduction defines environmental degradation as “the reduction of the capacity of the environment to meet social and ecological objectives, and needs”. Environmental degradation is of many types. When natural habitats are destroyed or natural resources are depleted, the environment is degraded. Efforts to counteract this problem include environmental protection and environmental resources management.

Water degradation
One major component of environmental degradation is the depletion of the resource of fresh water on Earth. Approximately only 2.5% of all of the water on Earth is fresh water, with the rest being salt water. 69% of fresh water is frozen in ice caps located on Antarctica and Greenland, so only 30% of the 2.5% of fresh water is available for consumption. Fresh water is an exceptionally important resource, since life on Earth is ultimately dependent on it. Water transports nutrients, minerals and chemicals within the biosphere to all forms of life, sustains both plants and animals, and moulds the surface of the Earth with transportation and deposition of materials.

The current top three uses of fresh water account for 95% of its consumption; approximately 85% is used for irrigation of farmland, golf courses, and parks, 6% is used for domestic purposes such as indoor bathing uses and outdoor garden and lawn use, and 4% is used for industrial purposes such as processing, washing, and cooling in manufacturing centers. It is estimated that one in three people over the entire globe are already facing water shortages, almost one-fifth of the world population live in areas of physical water scarcity, and almost one quarter of the world’s population live in a developing country that lacks the necessary infrastructure to use water from available rivers and aquifers. Water scarcity is an increasing problem due to many foreseen issues in the future, including population growth, increased urbanization, higher standards of living, and climate change.

Climate change and temperature
Climate change affects the Earth’s water supply in a large number of ways. It is predicted that the mean global temperature will rise in the coming years due to a number of forces affecting the climate, the amount of atmospheric carbon dioxide (CO2) will rise, and both of these will influence water resources; evaporation depends strongly on temperature and moisture availability, which can ultimately affect the amount of water available to replenish groundwater supplies.

Transpiration from plants can be affected by a rise in atmospheric CO2, which can decrease their use of water, but can also raise their use of water from possible increases of leaf area. Temperature rise can reduce the snow season in the winter and increase the intensity of the melting snow leading to peak runoff of this, affecting soil moisture, flood and drought risks, and storage capacities depending on the area.

Warmer winter temperatures cause a decrease in snowpack, which can result in diminished water resources during summer. This is especially important at mid-latitudes and in mountain regions that depend on glacial runoff to replenish their river systems and groundwater supplies, making these areas increasingly vulnerable to water shortages over time; an increase in temperature will initially result in a rapid rise in water melting from glaciers in the summer, followed by a retreat in glaciers and a decrease in the melt and consequently the water supply every year as the size of these glaciers get smaller and smaller.

Thermal expansion of water and increased melting of oceanic glaciers from an increase in temperature gives way to a rise in sea level, which can affect the fresh water supply of coastal areas as well; as river mouths and deltas with higher salinity get pushed further inland, an intrusion of saltwater results in an increase of salinity in reservoirs and aquifers. Sea-level rise may also consequently be caused by a depletion of groundwater, as climate change can affect the hydrologic cycle in a number of ways. Uneven distributions of increased temperatures and increased precipitation around the globe results in water surpluses and deficits, but a global decrease in groundwater suggests a rise in sea level, even after meltwater and thermal expansion were accounted for, which can provide a positive feedback to the problems sea-level rise causes to fresh-water supply.

A rise in air temperature results in a rise in water temperature, which is also very significant in water degradation, as the water would become more susceptible to bacterial growth. An increase in water temperature can also affect ecosystems greatly because of a species’ sensitivity to temperature, and also by inducing changes in a body of water’s self-purification system from decreased amounts of dissolved oxygen in the water due to rises in temperature.

Climate change and precipitation
A rise in global temperatures is also predicted to correlate with an increase in global precipitation, but because of increased runoff, floods, increased rates of soil erosion, and mass movement of land, a decline in water quality is probable, while water will carry more nutrients, it will also carry more contaminants. While most of the attention about climate change is directed towards global warming and greenhouse effect, some of the most severe effects of climate change are likely to be from changes in precipitation, evapotranspiration, runoff, and soil moisture. It is generally expected that, on average, global precipitation will increase, with some areas receiving increases and some decreases.

Climate models show that while some regions should expect an increase in precipitation, such as in the tropics and higher latitudes, other areas are expected to see a decrease, such as in the subtropics; this will ultimately cause a latitudinal variation in water distribution. The areas receiving more precipitation are also expected to receive this increase during their winter and actually become drier during their summer, creating even more of a variation of precipitation distribution. Naturally, the distribution of precipitation across the planet is very uneven, causing constant variations in water availability in respective locations.

Changes in precipitation affect the timing and magnitude of floods and droughts, shift runoff processes, and alter groundwater recharge rates. Vegetation patterns and growth rates will be directly affected by shifts in precipitation amount and distribution, which will in turn affect agriculture as well as natural ecosystems. Decreased precipitation will deprive areas of water, causing water tables to fall and reservoirs and wetlands, rivers, and lakes to empty, and possibly an increase in evaporation and evapotranspiration, depending on the accompanied rise in temperature. Groundwater reserves will be depleted, and the remaining water has a greater chance of being of poor quality from saline or contaminants on the land surface.

Population growth
The human population on Earth is expanding rapidly which goes hand in hand with the degradation of the environment at large measures. Humanity’s appetite for needs is disarranging the environment’s natural equilibrium. Production industries are venting smoke and discharging chemicals that are polluting water resources. The smoke that is emitted into the atmosphere holds detrimental gases such as carbon monoxide and sulfur dioxide. The high levels of pollution in the atmosphere form layers that are eventually absorbed into the atmosphere. Organic compounds such as chlorofluorocarbons (CFC’s) have generated an unwanted opening in the ozone layer, which emits higher levels of ultraviolet radiation putting the globe at large threat.

The available fresh water being affected by the climate is also being stretched across an ever-increasing global population. It is estimated that almost a quarter of the global population is living in an area that is using more than 20% of their renewable water supply; water use will rise with population while the water supply is also being aggravated by decreases in streamflow and groundwater caused by climate change. Even though some areas may see an increase in freshwater supply from an uneven distribution of precipitation increase, an increased use of water supply is expected.

An increased population means increased withdrawals from the water supply for domestic, agricultural, and industrial uses, the largest of these being agriculture, believed to be the major non-climate driver of environmental change and water deterioration. The next 50 years will likely be the last period of rapid agricultural expansion, but the larger and wealthier population over this time will demand more agriculture.

Population increase over the last two decades, at least in the United States, has also been accompanied by a shift to an increase in urban areas from rural areas, which concentrates the demand for water into certain areas, and puts stress on the fresh water supply from industrial and human contaminants. Urbanization causes overcrowding and increasingly unsanitary living conditions, especially in developing countries, which in turn exposes an increasingly number of people to disease. About 79% of the world’s population is in developing countries, which lack access to sanitary water and sewer systems, giving rises to disease and deaths from contaminated water and increased numbers of disease-carrying insects.

Agriculture
Agriculture is dependent on available soil moisture, which is directly affected by climate dynamics, with precipitation being the input in this system and various processes being the output, such as evapotranspiration, surface runoff, drainage, and percolation into groundwater. Changes in climate, especially the changes in precipitation and evapotranspiration predicted by climate models, will directly affect soil moisture, surface runoff, and groundwater recharge.

In areas with decreasing precipitation as predicted by the climate models, soil moisture may be substantially reduced. With this in mind, agriculture in most areas needs irrigation already, which depletes fresh water supplies both by the physical use of the water and the degradation agriculture causes to the water. Irrigation increases salt and nutrient content in areas that would not normally be affected, and damages streams and rivers from damming and removal of water. Fertilizer enters both human and livestock waste streams that eventually enter groundwater, while nitrogen, phosphorus, and other chemicals from fertilizer can acidify both soils and water. Certain agricultural demands may increase more than others with an increasingly wealthier global population, and meat is one commodity expected to double global food demand by 2050, which directly affects the global supply of fresh water. Cows need water to drink, more if the temperature is high and humidity is low, and more if the production system the cow is in is extensive, since finding food takes more effort. Water is needed in processing of the meat, and also in the production of feed for the livestock. Manure can contaminate bodies of freshwater, and slaughterhouses, depending on how well they are managed, contribute waste such as blood, fat, hair, and other bodily contents to supplies of fresh water.

The transfer of water from agricultural to urban and suburban use raises concerns about agricultural sustainability, rural socioeconomic decline, food security, an increased carbon footprint from imported food, and decreased foreign trade balance. The depletion of fresh water, as applied to more specific and populated areas, increases fresh water scarcity among the population and also makes populations susceptible to economic, social, and political conflict in a number of ways; rising sea levels forces migration from coastal areas to other areas farther inland, pushing populations closer together breaching borders and other geographical patterns, and agricultural surpluses and deficits from the availability of water induce trade problems and economies of certain areas. Climate change is an important cause of involuntary migration and forced displacement According to the Food and Agriculture Organization of the United Nations, global greenhouse gas emissions from animal agriculture exceeds that of transportation.

Water management
The issue of the depletion of fresh water can be met by increased efforts in water management. While water management systems are often flexible, adaptation to new hydrologic conditions may be very costly. Preventative approaches are necessary to avoid high costs of inefficiency and the need for rehabilitation of water supplies, and innovations to decrease overall demand may be important in planning water sustainability.

Water supply systems, as they exist now, were based on the assumptions of the current climate, and built to accommodate existing river flows and flood frequencies. Reservoirs are operated based on past hydrologic records, and irrigation systems on historical temperature, water availability, and crop water requirements; these may not be a reliable guide to the future. Re-examining engineering designs, operations, optimizations, and planning, as well as re-evaluating legal, technical, and economic approaches to manage water resources are very important for the future of water management in response to water degradation. Another approach is water privatization; despite its economic and cultural effects, service quality and overall quality of the water can be more easily controlled and distributed. Rationality and sustainability is appropriate, and requires limits to overexploitation and pollution, and efforts in conservation.

Environmental degradation effects
Human activity is causing environmental degradation, which is the deterioration of the environment through depletion of resources such as air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. As indicated by the I=PAT equation, environmental impact (I) or degradation is caused by the combination of an already very large and increasing human population (P), continually increasing economic growth or per capita affluence (A), and the application of resource-depleting and polluting technology (T).

Mass extinction, defaunation, and decline in biodiversity
Biodiversity generally refers to the variety and variability of life on Earth, and is represented by the number of different species there are on the planet. Since its introduction, Homo sapiens (the human species) has been killing off entire species either directly (such as through hunting) or indirectly (such as by destroying habitats), causing the extinction of species at an alarming rate. Humans are the cause of the current mass extinction, called the Holocene extinction, driving extinctions to 100 to 1000 times the normal background rate. Though most experts agree that human beings have accelerated the rate of species extinction, some scholars have postulated without humans, the biodiversity of the Earth would grow at an exponential rate rather than decline. The Holocene extinction continues, with meat consumption, overfishing, ocean acidification and the amphibian crisis being a few broader examples of an almost universal, cosmopolitan decline in biodiversity. Human overpopulation (and continued population growth) along with profligate consumption are considered to be the primary drivers of this rapid decline. A 2017 statement by 15,364 scientists from 184 countries warned that, among other things, this sixth extinction event unleashed by humanity could annihilate many current life forms and consign them to extinction by the end of this century.

Defaunation is the loss of animals from ecological communities.

It is estimated that more than 50 percent of all wildlife has been lost in the last 40 years. It is estimated that by 2020, 68% of the world’s wildlife will be lost. In South America, there is believed to be a 70 percent loss. A May 2018 study published in PNAS found that 83% of wild mammals, 80% of marine mammals, 50% of plants and 15% of fish have been lost since the dawn of human civilization. Currently, livestock make up 60% of all mammals on earth, followed by humans (36%) and wild mammals (4%).

Death of coral reefs
Because of human overpopulation, coral reefs are dying around the world. In particular, coral mining, pollution (organic and non-organic), overfishing, blast fishing and the digging of canals and access into islands and bays are serious threats to these ecosystems. Coral reefs also face high dangers from pollution, diseases, destructive fishing practices and warming oceans. In order to find answers for these problems, researchers study the various factors that impact reefs. The list of factors is long, including the ocean’s role as a carbon dioxide sink, atmospheric changes, ultraviolet light, ocean acidification, biological virus, impacts of dust storms carrying agents to far flung reefs, pollutants, algal blooms and others. Reefs are threatened well beyond coastal areas.

General estimates show approximately 10% world’s coral reefs are already dead. It is estimated that about 60% of the world’s reefs are at risk due to destructive, human-related activities. The threat to the health of reefs is particularly strong in Southeast Asia, where 80% of reefs are endangered.

Decline in amphibian populations

Global warming
Global warming is the result of increasing atmospheric carbon dioxide concentrations which is caused primarily by the combustion of fossil energy sources such as petroleum, coal, and natural gas, and to an unknown extent by destruction of forests, increased methane, volcanic activity and cement production. Such massive alteration of the global carbon cycle has only been possible because of the availability and deployment of advanced technologies, ranging in application from fossil fuel exploration, extraction, distribution, refining, and combustion in power plants and automobile engines and advanced farming practices. Livestock contributes to climate change both through the production of greenhouse gases and through destruction of carbon sinks such as rain-forests. According to the 2006 United Nations/FAO report, 18% of all greenhouse gas emissions found in the atmosphere are due to livestock. The raising of livestock and the land needed to feed them has resulted in the destruction millions of acres of Rainforest and as global demand for meat rises, so too will the demand for land. Ninety-one percent of all rainforest land deforested since 1970 is now used for livestock. Potential negative environmental impacts caused by increasing atmospheric carbon dioxide concentrations are rising global air temperatures, altered hydrogeological cycles resulting in more frequent and severe droughts, storms, and floods, as well as sea level rise and ecosystem disruption.

Habitat destruction
Tropical rainforests have received most of the attention concerning the destruction of habitat. From the approximately 16 million square kilometers of tropical rainforest habitat that originally existed worldwide, less than 9 million square kilometers remain today. The current rate of deforestation is 160,000 square kilometers per year, which equates to a loss of approximately 1% of original forest habitat each year.

Land degradation
Land degradation is a process in which the value of the biophysical environment is affected by a combination of human-induced processes acting upon the land. It is viewed as any change or disturbance to the land perceived to be deleterious or undesirable. Natural hazards are excluded as a cause; however human activities can indirectly affect phenomena such as floods and bush fires.

This is considered to be an important topic of the 21st century due to the implications land degradation has upon agronomic productivity, the environment, and its effects on food security. It is estimated that up to 40% of the world’s agricultural land is seriously degraded.

Desertification
Drylands occupy approximately 40–41% of Earth’s land area and are home to more than 2 billion people. It has been estimated that some 10–20% of drylands are already degraded, the total area affected by desertification being between 6 and 12 million square kilometres, that about 1–6% of the inhabitants of drylands live in desertified areas, and that a billion people are under threat from further desertification.

Ocean acidification
Increasing acidity has possibly harmful consequences, such as depressing metabolic rates in jumbo squid, depressing the immune responses of blue mussels, and coral bleaching. However it may benefit some species, for example increasing the growth rate of the sea star, Pisaster ochraceus, while shelled plankton species may flourish in altered oceans.

Ozone depletion
Since the ozone layer absorbs UVB ultraviolet light from the sun, ozone layer depletion increases surface UVB levels (all else equal), which could lead to damage, including increase in skin cancer. This was the reason for the Montreal Protocol. Although decreases in stratospheric ozone are well-tied to CFCs and to increases in surface UVB, there is no direct observational evidence linking ozone depletion to higher incidence of skin cancer and eye damage in human beings. This is partly because UVA, which has also been implicated in some forms of skin cancer, is not absorbed by ozone, and because it is nearly impossible to control statistics for lifestyle changes over time.

Water degradation
One major component of environmental degradation is the depletion of the resource of fresh water on Earth. Approximately only 2.5% of all of the water on Earth is fresh water, with the rest being salt water. 69% of fresh water is frozen in ice caps located on Antarctica and Greenland, so only 30% of the 2.5% of fresh water is available for consumption. Fresh water is an exceptionally important resource, since life on Earth is ultimately dependent on it. Water transports nutrients, minerals and chemicals within the biosphere to all forms of life, sustains both plants and animals, and moulds the surface of the Earth with transportation and deposition of materials.

The current top three uses of fresh water account for 95% of its consumption; approximately 85% is used for irrigation of farmland, golf courses, and parks, 6% is used for domestic purposes such as indoor bathing uses and outdoor garden and lawn use, and 4% is used for industrial purposes such as processing, washing, and cooling in manufacturing centers. It is estimated that one in three people over the entire globe are already facing water shortages, almost one-fifth of the world population live in areas of physical water scarcity, and almost one quarter of the world’s population live in a developing country that lacks the necessary infrastructure to use water from available rivers and aquifers. Water scarcity is an increasing problem due to many foreseen issues in the future, including population growth, increased urbanization, higher standards of living, and climate change.

Disruption of the nitrogen cycle
Of particular concern is N2O, which has an average atmospheric lifetime of 114–120 years, and is 300 times more effective than CO2 as a greenhouse gas. NOx produced by industrial processes, automobiles and agricultural fertilization and NH3 emitted from soils (i.e., as an additional byproduct of nitrification) and livestock operations are transported to downwind ecosystems, influencing N cycling and nutrient losses. Six major effects of NOx and NH3 emissions have been identified:

decreased atmospheric visibility due to ammonium aerosols (fine particulate matter )
elevated ozone concentrations
ozone and PM affects human health (e.g. respiratory diseases, cancer)
increases in radiative forcing and global warming
decreased agricultural productivity due to ozone deposition
ecosystem acidification and eutrophication.

Effects on human health
Human impacts upon the environment, such as pollution and global warming, in turn affect human health.

Pollution
Adverse air quality can kill many organisms including humans. Ozone pollution can cause respiratory disease, cardiovascular disease, throat inflammation, chest pain, and congestion. Water pollution causes approximately 14,000 deaths per day, mostly due to contamination of drinking water by untreated sewage in developing countries. An estimated 500 million Indians have no access to a proper toilet, Over ten million people in India fell ill with waterborne illnesses in 2013, and 1,535 people died, most of them children. Nearly 500 million Chinese lack access to safe drinking water. A 2010 analysis estimated that 1.2 million people died prematurely each year in China because of air pollution. The high smog levels China has been facing for a long time can do damage to civilians bodies and generate different diseases The WHO estimated in 2007 that air pollution causes half a million deaths per year in India. Studies have estimated that the number of people killed annually in the United States could be over 50,000.

Oil spills can cause skin irritations and rashes. Noise pollution induces hearing loss, high blood pressure, stress, and sleep disturbance. Mercury has been linked to developmental deficits in children and neurologic symptoms. Older people are majorly exposed to diseases induced by air pollution. Those with heart or lung disorders are at additional risk. Children and infants are also at serious risk. Lead and other heavy metals have been shown to cause neurological problems. Chemical and radioactive substances can cause cancer and as well as birth defects.

An October 2017 study by the Lancet Commission on Pollution and Health found that global pollution, specifically toxic air, water, soils and workplaces, kill nine million people annually, which is triple the number of deaths caused by AIDS, tuberculosis and malaria combined, and 15 times higher than deaths caused by wars and other forms of human violence. The study concluded that “pollution is one of the great existential challenges of the Anthropocene era. Pollution endangers the stability of the Earth’s support systems and threatens the continuing survival of human societies.”

Source from Wikipedia