Categories: ObjectProduct

Diving equipment

Diving equipment is equipment used by underwater divers to make diving activities possible, easier, safer and/or more comfortable. This may be equipment primarily intended for this purpose, or equipment intended for other purposes which is found to be suitable for diving use.

The fundamental item of diving equipment used by divers is underwater breathing apparatus, such as scuba equipment, and surface supplied diving equipment, but there are other important pieces of equipment that make diving safer, more convenient or more efficient. Diving equipment used by recreational scuba divers is mostly personal equipment carried by the diver, but professional divers, particularly when operating in the surface supplied or saturation mode, use a large amount of support equipment not carried by the diver.

Equipment which is used for underwater work or other activities which is not directly related to the activity of diving, or which has not been designed or modified specifically for underwater use by divers is excluded.

Breathing apparatus
The defining equipment used by a scuba diver is the eponymous scuba, the self-contained underwater breathing apparatus which allows the diver to breathe while diving, and is transported by the diver.

As one descends, in addition to the normal atmospheric pressure at the surface, the water exerts increasing hydrostatic pressure of approximately 1 bar (14.7 pounds per square inch) for every 10 m (33 feet) of depth. The pressure of the inhaled breath must balance the surrounding or ambient pressure to allow inflation of the lungs. It becomes virtually impossible to breathe air at normal atmospheric pressure through a tube below three feet under the water.

Most recreational scuba diving is done using a half mask which covers the diver’s eyes and nose, and a mouthpiece to supply the breathing gas from the demand valve or rebreather. Inhaling from a regulator’s mouthpiece becomes second nature very quickly. The other common arrangement is a full face mask which covers the eyes, nose and mouth, and often allows the diver to breathe through the nose. Professional scuba divers are more likely to use full face masks, which protect the diver’s airway if the diver loses consciousness.

Open-circuit
Open circuit scuba has no provision for using the breathing gas more than once for respiration. The gas inhaled from the scuba equipment is exhaled to the environment, or occasionally into another item of equipment for a special purpose, usually to increase buoyancy of a lifting device such as a buoyancy compensator, inflatable surface marker buoy or small lifting bag. The breathing gas is generally provided from a high-pressure diving cylinder through a scuba regulator. By always providing the appropriate breathing gas at ambient pressure, demand valve regulators ensure the diver can inhale and exhale naturally and without excessive effort, regardless of depth, as and when needed.

The most commonly used scuba set uses a “single-hose” open circuit 2-stage demand regulator, connected to a single back-mounted high-pressure gas cylinder, with the first stage connected to the cylinder valve and the second stage at the mouthpiece. This arrangement differs from Émile Gagnan’s and Jacques Cousteau’s original 1942 “twin-hose” design, known as the Aqua-lung, in which the cylinder pressure was reduced to ambient pressure in one or two stages which were all in the housing mounted to the cylinder valve or manifold. The “single-hose” system has significant advantages over the original system for most applications.

Rebreather
Less common are closed circuit (CCR) and semi-closed (SCR) rebreathers which, unlike open-circuit sets that vent off all exhaled gases, process all or part of each exhaled breath for re-use by removing the carbon dioxide and replacing the oxygen used by the diver. Rebreathers release few or no gas bubbles into the water, and use much less stored gas volume, for an equivalent depth and time because exhaled oxygen is recovered; this has advantages for research, military, photography, and other applications. Rebreathers are more complex and more expensive than open-circuit scuba, and special training and correct maintenance are required for them to be safely used, due to the larger variety of potential failure modes.

In a closed-circuit rebreather the oxygen partial pressure in the rebreather is controlled, so it can be maintained at a safe continuous maximum, which reduces the inert gas (nitrogen and/or helium) partial pressure in the breathing loop. Minimising the inert gas loading of the diver’s tissues for a given dive profile reduces the decompression obligation. This requires continuous monitoring of actual partial pressures with time and for maximum effectiveness requires real-time computer processing by the diver’s decompression computer. Decompression can be much reduced compared to fixed ratio gas mixes used in other scuba systems and, as a result, divers can stay down longer or require less time to decompress. A semi-closed circuit rebreather injects a constant mass flow of a fixed breathing gas mixture into the breathing loop, or replaces a specific percentage of the respired volume, so the partial pressure of oxygen at any time during the dive depends on the diver’s oxygen consumption and/or breathing rate. Planning decompression requirements requires a more conservative approach for a SCR than for a CCR, but decompression computers with a real time oxygen partial pressure input can optimise decompression for these systems. Because rebreathers produce very few bubbles, they do not disturb marine life or make a diver’s presence known at the surface; this is useful for underwater photography, and for covert work.

Gas mixtures
For some diving, gas mixtures other than normal atmospheric air (21% oxygen, 78% nitrogen, 1% trace gases) can be used, so long as the diver is competent in their use. The most commonly used mixture is nitrox, also referred to as Enriched Air Nitrox (EAN), which is air with extra oxygen, often with 32% or 36% oxygen, and thus less nitrogen, reducing the risk of decompression sickness or allowing longer exposure to the same pressure for equal risk. The reduced nitrogen may also allow for no stops or shorter decompression stop times or a shorter surface interval between dives. A common misconception is that nitrox can reduce narcosis, but research has shown that oxygen is also narcotic.:304

The increased partial pressure of oxygen due to the higher oxygen content of nitrox increases the risk of oxygen toxicity, which becomes unacceptable below the maximum operating depth of the mixture. To displace nitrogen without the increased oxygen concentration, other diluent gases can be used, usually helium, when the resultant three gas mixture is called trimix, and when the nitrogen is fully substituted by helium, heliox.

For dives requiring long decompression stops, divers may carry cylinders containing different gas mixtures for the various phases of the dive, typically designated as Travel, Bottom, and Decompression gases. These different gas mixtures may be used to extend bottom time, reduce inert gas narcotic effects, and reduce decompression times.

Diver mobility
To take advantage of the freedom of movement afforded by scuba equipment, the diver needs to be mobile underwater. Personal mobility is enhanced by swimfins and optionally diver propulsion vehicles. Fins have a large blade area and use the more powerful leg muscles, so are much more efficient for propulsion and manoeuvering thrust than arm and hand movements, but require skill to provide fine control. Several types of fin are available, some of which may be more suited for manoeuvering, alternative kick styles, speed, endurance, reduced effort or ruggedness. Streamlining dive gear will reduce drag and improve mobility. Balanced trim which allows the diver to align in any desired direction also improves streamlining by presenting the smallest section area to the direction of movement and allowing propulsion thrust to be used more efficiently.

Occasionally a diver may be towed using a “sled”, an unpowered device towed behind a surface vessel which conserves the diver’s energy and allows more distance to be covered for a given air consumption and bottom time. The depth is usually controlled by the diver by using diving planes or by tilting the whole sled. Some sleds are faired to reduce drag on the diver.

Buoyancy control and trim
To dive safely, divers must control their rate of descent and ascent in the water and be able to maintain a constant depth in midwater. Ignoring other forces such as water currents and swimming, the diver’s overall buoyancy determines whether they ascend or descend. Equipment such as diving weighting systems, diving suits (wet, dry or semi-dry suits are used depending on the water temperature) and buoyancy compensators can be used to adjust the overall buoyancy. When divers want to remain at constant depth, they try to achieve neutral buoyancy. This minimises the effort of swimming to maintain depth and therefore reduces gas consumption.

The buoyancy force on the diver is the weight of the volume of the liquid that they and their equipment displace minus the weight of the diver and their equipment; if the result is positive, that force is upwards. The buoyancy of any object immersed in water is also affected by the density of the water. The density of fresh water is about 3% less than that of ocean water. Therefore, divers who are neutrally buoyant at one dive destination (e.g. a fresh water lake) will predictably be positively or negatively buoyant when using the same equipment at destinations with different water densities (e.g. a tropical coral reef). The removal (“ditching” or “shedding”) of diver weighting systems can be used to reduce the diver’s weight and cause a buoyant ascent in an emergency.

Diving suits made of compressible materials decrease in volume as the diver descends, and expand again as the diver ascends, causing buoyancy changes. Diving in different environments also necessitates adjustments in the amount of weight carried to achieve neutral buoyancy. The diver can inject air into dry suits to counteract the compression effect and squeeze. Buoyancy compensators allow easy and fine adjustments in the diver’s overall volume and therefore buoyancy.

Neutral buoyancy in a diver is an unstable state. It is changed by small differences in ambient pressure caused by a change in depth, and the change has a positive feedback effect. A small descent will increase the pressure, which will compress the gas filled spaces and reduce the total volume of diver and equipment. This will further reduce the buoyancy, and unless counteracted, will result in sinking more rapidly. The equivalent effect applies to a small ascent, which will trigger an increased buoyancy and will result in accelerated ascent unless counteracted. The diver must continuously adjust buoyancy or depth in order to remain neutral. Fine control of buoyancy can be achieved by controlling the average lung volume in open circuit scuba, but this feature is not available to the closed circuit rebreather diver, as exhaled gas remains in the breathing loop. This is a skill which improves with practice until it becomes second nature.

Buoyancy changes with depth variation are proportional to the compressible part of the volume of the diver and equipment, and to the proportional change in pressure, which is greater per unit of depth near the surface. Minimising the volume of gas required in the buoyancy compensator will minimise the buoyancy fluctuations with changes in depth. This can be achieved by accurate selection of ballast weight, which should be the minimum to allow neutral buoyancy with depleted gas supplies at the end of the dive unless there is an operational requirement for greater negative buoyancy during the dive. Buoyancy and trim can significantly affect drag of a diver. The effect of swimming with a head up angle of about 15°, as is quite common in poorly trimmed divers, can be an increase in drag in the order of 50%.

The ability to ascend at a controlled rate and remain at a constant depth is important for correct decompression. Recreational divers who do not incur decompression obligations can get away with imperfect buoyancy control, but when long decompression stops at specific depths are required, the risk of decompression sickness is increased by depth variations while at a stop. Decompression stops are typically done when the breathing gas in the cylinders has been largely used up, and the reduction in weight of the cylinders increases the buoyancy of the diver. Enough weight must be carried to allow the diver to decompress at the end of the dive with nearly empty cylinders.

Underwater vision
Water has a higher refractive index than air – similar to that of the cornea of the eye. Light entering the cornea from water is hardly refracted at all, leaving only the eye’s crystalline lens to focus light. This leads to very severe hypermetropia. People with severe myopia, therefore, can see better underwater without a mask than normal-sighted people. Diving masks and helmets solve this problem by providing an air space in front of the diver’s eyes. The refraction error created by the water is mostly corrected as the light travels from water to air through a flat lens, except that objects appear approximately 34% bigger and 25% closer in water than they actually are. The faceplate of the mask is supported by a frame and skirt, which are opaque or translucent, therefore total field-of-view is significantly reduced and eye–hand coordination must be adjusted.

Divers who need corrective lenses to see clearly outside the water would normally need the same prescription while wearing a mask. Generic corrective lenses are available off the shelf for some two-window masks, and custom lenses can be bonded onto masks that have a single front window or two windows.

As a diver descends, they must periodically exhale through their nose to equalise the internal pressure of the mask with that of the surrounding water. Swimming goggles are not suitable for diving because they only cover the eyes and thus do not allow for equalisation. Failure to equalise the pressure inside the mask may lead to a form of barotrauma known as mask squeeze.

Related Post

Masks tend to fog when warm humid exhaled air condenses on the cold inside of the faceplate. To prevent fogging many divers spit into the dry mask before use, spread the saliva around the inside of the glass and rinse it out with a little water. The saliva residue allows condensation to wet the glass and form a continuous film, rather than tiny droplets. There are several commercial products that can be used as an alternative to saliva, some of which are more effective and last longer, but there is a risk of getting the anti-fog agent in the eyes.

Dive lights
Water attenuates light by selective absorption. Pure water preferentially absorbs red light, and to a lesser extent, yellow and green, so the colour that is least absorbed is blue light. Dissolved materials may also selectively absorb colour in addition to the absorption by the water itself. In other words, as a diver goes deeper on a dive, more colour is absorbed by the water, and in clean water the colour becomes blue with depth. Colour vision is also affected by turbidity of the water which tends to reduce contrast. Artificial light is useful to provide light in the darkness, to restore contrast at close range, and to restore natural colour lost to absorption.

Environmental protection
Protection from heat loss in cold water is usually provided by wetsuits or dry suits. These also provide protection from sunburn, abrasion and stings from some marine organisms. Where thermal insulation is not important, lycra suits/diving skins may be sufficient.

A wetsuit is a garment, usually made of foamed neoprene, which provides thermal insulation, abrasion resistance and buoyancy. The insulation properties depend on bubbles of gas enclosed within the material, which reduce its ability to conduct heat. The bubbles also give the wetsuit a low density, providing buoyancy in water. Suits range from a thin (2 mm or less) “shortie”, covering just the torso, to a full 8 mm semi-dry, usually complemented by neoprene boots, gloves and hood. A good close fit and few zips help the suit to remain waterproof and reduce flushing – the replacement of water trapped between suit and body by cold water from the outside. Improved seals at the neck, wrists and ankles and baffles under the entry zip produce a suit known as “semi-dry”.

A dry suit also provides thermal insulation to the wearer while immersed in water, and normally protects the whole body except the head, hands, and sometimes the feet. In some configurations, these are also covered. Dry suits are usually used where the water temperature is below 15 °C (60 °F) or for extended immersion in water above 15 °C (60 °F), where a wetsuit user would get cold, and with an integral helmet, boots, and gloves for personal protection when diving in contaminated water. Dry suits are designed to prevent water from entering. This generally allows better insulation making them more suitable for use in cold water. They can be uncomfortably hot in warm or hot air, and are typically more expensive and more complex to don. For divers, they add some degree of complexity as the suit must be inflated and deflated with changes in depth in order to avoid “squeeze” on descent or uncontrolled rapid ascent due to over-buoyancy.

Monitoring and navigation
Unless the maximum depth of the water is known, and is quite shallow, a diver must monitor the depth and duration of a dive to avoid decompression sickness. Traditionally this was done by using a depth gauge and a diving watch, but electronic dive computers are now in general use, as they are programmed to do real-time modelling of decompression requirements for the dive, and automatically allow for surface interval. Many can be set for the gas mixture to be used on the dive, and some can accept changes in the gas mix during the dive. Most dive computers provide a fairly conservative decompression model, and the level of conservatism may be selected by the user within limits. Most decompression computers can also be set for altitude compensation to some degree.

If the dive site and dive plan require the diver to navigate, a compass may be carried, and where retracing a route is critical, as in cave or wreck penetrations, a guide line is laid from a dive reel. In less critical conditions, many divers simply navigate by landmarks and memory, a procedure also known as pilotage or natural navigation. A scuba diver should always be aware of the remaining breathing gas supply, and the duration of diving time that this will safely support, taking into account the time required to surface safely and an allowance for foreseeable contingencies. This is usually monitored by using a submersible pressure gauge on each cylinder.

Personal diving equipment
This is the diving equipment worn by or carried by the diver for personal protection or comfort, or to facilitate the diving aspect of the activity, and may include a selection from:

Underwater breathing apparatus
Scuba equipment: Primary cylinder(s), carried back-mounted or side mounted and open circuit regulator(s), or rebreather sets. Alternative air source such as bailout bottle or pony bottle, and decompression cylinders and their associated regulators. Secondary demand valve (Octopus).
Surface supplied equipment: Helmet or full face mask, diver’s umbilical, airline, bailout block, bailout cylinder and regulator.

Exposure protection
Thermal, sting and abrasion protection.

In cold water, a diving suit such as a dry suit (at temperatures of 0-10 °C), a wet suit (at temperatures of 21-25 °C), or a Hot water suit (surface supplied diving only) is necessary.
Boiler suit overalls are often worn over the thermal protection suit by commercial divers as abrasion protection
In very warm water (temperatures of 26-30 °C), many types of tough, long, everyday clothing provide protection, as well as purpose made garments such as dive skins (made of lycra) and shorty wetsuits. In some cases, simple regular swimsuits are also used.
Diving gloves, including wetsuit gloves and dry gloves, mitts, and three-finger mitts
Diving hoods
Diving boots – With dry suits, the boots are usually integrated.
Safety helmet for scuba diving. (Not part of the breathing apparatus.)
Diving chain mail may be used as protection against bites by large marine animals
Diver’s cages may be used as protection against large predators

In-water stabilisation and movement
A backplate is a structure onto which the back-mounted diving cylinders are mounted, usually linking the buoyancy compensator with the weight of the diving cylinders and provided with a harness of straps which secures the scuba set to the diver’s back. A backplate is generally used with a back inflation (wing) type buoyancy compensator, but can also be used without any buoyancy compensator.
Buoyancy compensator, also known as Buoyancy Control Device, BCD or BC – is usually a back mounted or sleeveless jacket style device which includes an inflatable bladder used to adjust the buoyancy of the diver under water, and provide positive buoyancy at the surface. The buoyancy compensator is usually an integral part of the harness system used to secure the scuba set to the diver. The earlier collar style buoyancy compensator is seldom used any more.
Diver Propulsion Vehicle – to increase the range of the diver underwater
Diving weighting system – to counteract the buoyancy of the diving suit and diver to allow descent. Professional divers may use additional weighting to ensure stability when working on the bottom
Fins for efficient propulsion

Equipment for dive monitoring and navigation
Depth gauge lets the diver monitor depth, particularly maximum depth and, when used with a watch and Decompression tables, also allows the diver to monitor decompression requirements. Some digital depth gauges also indicate ascent rate which is an important factor in avoiding decompression sickness
Pneumofathometer is the surface supplied diving depth gauge which displays the depth of the diver at the surface control panel.
Dive Computer helps the diver to avoid decompression sickness by indicating the decompression stops needed for the dive profile. Most dive computers also indicate depth, time and ascent rate. Some also indicate oxygen toxicity exposure and water temperature.
Diving watch is used with depth gauge for decompression monitoring when using decompression tables.
Compass for underwater navigation.
Submersible pressure gauge, also known as a “contents gauge” is used to monitor the remaining breathing gas supply in scuba cylinders.
Distance line or “come-home-line” can used to guide the diver back to the start point and safety in poor visibility.
A cave line is a line laid by a diver while penetrating a cave to ensure that the way out is known. Permanent cave lines are marked with line markers at all junctions, indicating the direction along the line toward the nearest exit.

Vision and communication
Masks allow the diver to see clearly underwater and protect the eyes.
Full face masks protect the face from dirty or cold water and increases safety by securing the gas supply to the diver’s face. If it contains no mouthpiece, the diver can talk allowing the use of communications equipment.
Half masks cover only the eyes and nose. The diver breathes from a separate mouthpiece on the regulator or rebreather.
Diving helmets are often used with surface supplied diving. They provide the same benefits as the full face mask but provide a very secure connection of the gas supply to the diver and additionally protect the head.
Underwater writing slates and pencils are used to transport pre-dive plans underwater, to record facts whilst underwater and to aid communication with other divers.
Dive lights, which are usually waterproof and pressure rated torches or flashlights, are essential for safety in low visibility or dark environments such as night diving and wreck and cave penetration. They are useful for communication and signalling both underwater and on the surface at night. Divers need artificial light even in shallow and clear water to reveal the red end of the spectrum of light which is absorbed as it travels through water. Underwater video lights can serve the same purpose.
Hand-held sonar for a diver can provide a synthetic view using ultrasonic signals emitted and processed by an electronic device and displayed on a screen.
Ultrasonic signalling devices which attract the buddies attention by vibration have been marketed and may have some limited utility.

Safety equipment
Cutting tools such as knives, line cutters or shears are often carried by divers to cut loose from entanglement in nets or lines. A surface marker buoy on a line held by the diver indicates the position of the diver to the surface personnel. This may be an inflatable marker deployed by the diver at the end of the dive, or a sealed float, towed for the whole dive. A surface marker also allows easy and accurate control of ascent rate and stop depth for safer decompression. A bailout cylinder provides breathing gas sufficient for a safe emergency ascent.

Various surface detection aids may be carried to help surface personnel spot the diver after ascent. In addition to the surface marker buoy, divers may carry mirrors, lights, strobes, whistles, flares or emergency locator beacons.

Diver’s safety harness, to which a lifeline may be attached, including Bell harness, AR vest, Jump jacket.
Lifeline (or tether): A line from the diver to a tender at the surface control point, which may be used for:
communications, by diving line signals,
to allow the diver to be found by the stand-by diver following the line,
to provide a guideline to the surface control point to guide the diver on return,
to assist the diver to maintain position in a current,
in an emergency, to recover the diver to the surface, and
in some cases lift the diver out of the water.
Shotline: A line connecting a shot weight to a marker buoy, used to mark a dive site and provide a vertical reference for descent and ascent.
Buddy line: A short line or strap connecting two divers in the water, used to prevent them from being separated in poor visibility and for communication by line signals.
Jonline: A short line or webbing strap to tether the diver to the shotline in a current.
Surface marker buoy, which indicates the position of the divers to people at the surface.
DSMB – (Delayed, or deployable surface marker buoy), or decompression buoy which is inflated at the start of, or during the ascent, to indicate the position of the divers to the surface team, and as a signal that the divers are ascending.
Cutting tool
Knife to cut lines, nets or to pry or dig. Can also be used for personal protection against underwater predators if needed. However, this latter use is not recommended, as it is generally ineffective.
Diver’s net or line cutter. This is a small handheld tool carried by scuba divers to extricate themselves if trapped in fishing net or fishing line. It has a small sharp blade such as a replaceable scalpel blade inside the small notch. There is a small hole at the other end to for a lanyard to tether the cutter to the diver.
Trauma shears. Very effective as a line cutter, with low risk of inadvertent injury or damage. Usually carried in a pocket or special purpose sheath.
Automatic diver recovery devices

Surface detection aids
The purposes of this class of personal equipment are to:

allow the support boat to monitor and find divers on the surface during or after a dive
prevent the diver being struck by boat traffic
mark the diver’s position when drift diving or while at the decompression stop
help rescue services in lifeboats and helicopters to locate the diver
Surface detection aids include:

Surface marker buoy, decompression buoy, delayed SMB, safety sausage or blob
Red or yellow collapsible flag – high visibility, robust, usually stored bungeed to cylinder
Whistle – cheap, will only be heard by people far from engine noise
Torch or flashlight – if at sea after nightfall
Strobe light – needs long-lasting batteries
High pressure whistle – expensive but effective
Orange dye marker – increases diver’s visibility from search helicopters
Mirror such as a used compact disc – to reflect sunlight or searchlights
Red pyrotechnic flares – for helicopters and lifeboats
ENOS Rescue-System
Emergency position-indicating rescue beacon (EPIRB)
Glow stick – for night diving

Personal tools and accessories
Camera, strobe (flash), video lights and housing – for underwater photography or underwater videography
Diving reel, spool or line holder to store and transport a distance line or line for a surface marker buoy. A spool is a small flanged cylinder with an axial hole, around which a length of line can be wound, and a line holder is a flat H-shaped piece of rigid sheet material on which a length of line can be wound, as an alternative to a reel or spool. The line may be used with a surface marker buoy or a delayed surface marker buoy, where negative buoyancy of the spool or line holder will help with unwinding the line underwater.
Dry box to hold objects the diver needs to keep dry at depth (wallet, cell phone)
Dry bag to carry items that must stay dry on the boat.
Dive bag to hold equipment for travel.
Tool bag to carry tools that may be required for the job. Various types and sizes are available.
A rescue tether is a short lanyard or strap carried by a surface supplied stand-by diver to be used to tether an unresponsive diver to the standby diver during a rescue. It is attached at one end to a D-ring on the stand-by diver’s harness, and has a clip at the other end which may be secured to a D-ring on the casualty’s harness to allow the rescuer the use of both hands during the return to the bell or surface.

Diving team tools and equipment
A jackstay is a line laid along the bottom to guide the diver during a search or to and from the workplace.
Lifting bags, an item of diving equipment consisting of a robust and air-tight bag with straps, which is used to lift heavy objects underwater by means of the bag’s buoyancy when filled with air.
A shot line, consisting of a weight, line and buoy is used to used to mark the location and identify the ascent and descent point of a dive site, allowing divers to navigate to and from the surface and to do decompression stops at a safe location and to help control rate of ascent and descent.
Decompression trapeze is used to assist in maintaining correct depth during in-water decompression stops
Diving bells and diving stages are used to transport divers from the surface to the underwater workplace.

Surface equipment connected with diving and underwater work
Diver down flag is flown warning others that divers are underwater
Diving air compressor to fill diving cylinders with high pressure air or other gasses
Surface supplied diving breathing gas supply system, including:
Low pressure breathing air compressors
High pressure gas storage equipment
Breathing gas distribution panels
Diver’s umbilicals
Diver voice communications equipment
Boats such as the rigid-hulled inflatable boat
Dive platforms (or swim platforms) on boats.
Boarding ladders, particularly the Christmas tree ladder configuration, with a single central rail and cantilevered rungs on both sides, which allows a diver to climb while wearing fins.
Echo sounder – a Sonar depth measuring and profiling device used for dive site location
GPS receiver – for locating dive sites
Proton magnetometer – for locating ferrous wrecks
Marine VHF radio – for communicating with rescue services and other boats
Saturation systems providing surface support for saturation diving.
Diving chambers for surface decompression and treatment of decompression illness
Diving support vessels

Source from Wikipedia

Share