Dimension of sustainability

Sustainability is a socio-ecological process characterized by a behavior in search of a common ideal. An ideal is an unattainable state or process in a given time / space but infinitely approximable and it is this continuous and infinite approach that injects sustainability into the process. Only ideals serve as referents in a turbulent and changeable environment (Ibid). It is a term linked to the action of man in relation to his environment, refers to the balance that exists in a species based on its environment and all the factors or resources it has to make possible the operation of all its parts, without the need to damage or sacrifice the capabilities of another environment. On the other hand, sustainability in terms of objectives means meeting the needs of current generations, but without affecting the capacity of future generations, and in operational terms, promoting economic and social progress while respecting natural ecosystems and the quality of the environment..

Environmental dimension
Healthy ecosystems provide vital goods and services to humans and other organisms. There are two major ways of reducing negative human impact and enhancing ecosystem services and the first of these is environmental management. This direct approach is based largely on information gained from earth science, environmental science and conservation biology. However, this is management at the end of a long series of indirect causal factors that are initiated by human consumption, so a second approach is through demand management of human resource use.

Management of human consumption of resources is an indirect approach based largely on information gained from economics. Herman Daly has suggested three broad criteria for ecological sustainability: renewable resources should provide a sustainable yield (the rate of harvest should not exceed the rate of regeneration); for non-renewable resources there should be equivalent development of renewable substitutes; waste generation should not exceed the assimilative capacity of the environment.

Environmental management
At the global scale and in the broadest sense environmental management involves the oceans, freshwater systems, land and atmosphere, but following the sustainability principle of scale it can be equally applied to any ecosystem from a tropical rainforest to a home garden.

Atmosphere
At a March 2009 meeting of the Copenhagen Climate Council, 2,500 climate experts from 80 countries issued a keynote statement that there is now “no excuse” for failing to act on global warming and that without strong carbon reduction “abrupt or irreversible” shifts in climate may occur that “will be very difficult for contemporary societies to cope with”. Management of the global atmosphere now involves assessment of all aspects of the carbon cycle to identify opportunities to address human-induced climate change and this has become a major focus of scientific research because of the potential catastrophic effects on biodiversity and human communities.

Other human impacts on the atmosphere include the air pollution in cities, the pollutants including toxic chemicals like nitrogen oxides, sulfur oxides, volatile organic compounds and airborne particulate matter that produce photochemical smog and acid rain, and the chlorofluorocarbons that degrade the ozone layer. Anthropogenic particulates such as sulfate aerosols in the atmosphere reduce the direct irradiance and reflectance (albedo) of the Earth’s surface. Known as global dimming, the decrease is estimated to have been about 4% between 1960 and 1990 although the trend has subsequently reversed. Global dimming may have disturbed the global water cycle by reducing evaporation and rainfall in some areas. It also creates a cooling effect and this may have partially masked the effect of greenhouse gases on global warming.

Freshwater and oceans
Water covers 71% of the Earth’s surface. Of this, 97.5% is the salty water of the oceans and only 2.5% freshwater, most of which is locked up in the Antarctic ice sheet. The remaining freshwater is found in glaciers, lakes, rivers, wetlands, the soil, aquifers and atmosphere. Due to the water cycle, fresh water supply is continually replenished by precipitation, however there is still a limited amount necessitating management of this resource. Awareness of the global importance of preserving water for ecosystem services has only recently emerged as, during the 20th century, more than half the world’s wetlands have been lost along with their valuable environmental services. Increasing urbanization pollutes clean water supplies and much of the world still does not have access to clean, safe water. Greater emphasis is now being placed on the improved management of blue (harvestable) and green (soil water available for plant use) water, and this applies at all scales of water management.

Ocean circulation patterns have a strong influence on climate and weather and, in turn, the food supply of both humans and other organisms. Scientists have warned of the possibility, under the influence of climate change, of a sudden alteration in circulation patterns of ocean currents that could drastically alter the climate in some regions of the globe. Ten per cent of the world’s population—about 600 million people—live in low-lying areas vulnerable to sea level rise.

Land use
Loss of biodiversity stems largely from the habitat loss and fragmentation produced by the human appropriation of land for development, forestry and agriculture as natural capital is progressively converted to man-made capital. Land use change is fundamental to the operations of the biosphere because alterations in the relative proportions of land dedicated to urbanisation, agriculture, forest, woodland, grassland and pasture have a marked effect on the global water, carbon and nitrogen biogeochemical cycles and this can impact negatively on both natural and human systems. At the local human scale, major sustainability benefits accrue from sustainable parks and gardens and green cities.

Since the Neolithic Revolution about 47% of the world’s forests have been lost to human use. Present-day forests occupy about a quarter of the world’s ice-free land with about half of these occurring in the tropics. In temperate and boreal regions forest area is gradually increasing (with the exception of Siberia), but deforestation in the tropics is of major concern.

Food is essential to life. Feeding more than seven billion human bodies takes a heavy toll on the Earth’s resources. This begins with the appropriation of about 38% of the Earth’s land surface and about 20% of its net primary productivity. Added to this are the resource-hungry activities of industrial agribusiness—everything from the crop need for irrigation water, synthetic fertilizers and pesticides to the resource costs of food packaging, transport (now a major part of global trade) and retail. Environmental problems associated with industrial agriculture and agribusiness are now being addressed through such movements as sustainable agriculture, organic farming and more sustainable business practices.

Management of human consumption
The underlying driver of direct human impacts on the environment is human consumption. This impact is reduced by not only consuming less but by also making the full cycle of production, use and disposal more sustainable. Consumption of goods and services can be analysed and managed at all scales through the chain of consumption, starting with the effects of individual lifestyle choices and spending patterns, through to the resource demands of specific goods and services, the impacts of economic sectors, through national economies to the global economy. Analysis of consumption patterns relates resource use to the environmental, social and economic impacts at the scale or context under investigation. The ideas of embodied resource use (the total resources needed to produce a product or service), resource intensity, and resource productivity are important tools for understanding the impacts of consumption. Key resource categories relating to human needs are food, energy, materials and water.

Energy
The Sun’s energy, stored by plants (primary producers) during photosynthesis, passes through the food chain to other organisms to ultimately power all living processes. Since the industrial revolution the concentrated energy of the Sun stored in fossilized plants as fossil fuels has been a major driver of technology which, in turn, has been the source of both economic and political power. In 2007 climate scientists of the IPCC concluded that there was at least a 90% probability that atmospheric increase in CO2 was human-induced, mostly as a result of fossil fuel emissions but, to a lesser extent from changes in land use. Stabilizing the world’s climate will require high-income countries to reduce their emissions by 60–90% over 2006 levels by 2050 which should hold CO2 levels at 450–650 ppm from current levels of about 380 ppm. Above this level, temperatures could rise by more than 2 °C to produce “catastrophic” climate change. Reduction of current CO2 levels must be achieved against a background of global population increase and developing countries aspiring to energy-intensive high consumption Western lifestyles.

Reducing greenhouse emissions, is being tackled at all scales, ranging from tracking the passage of carbon through the carbon cycle to the commercialization of renewable energy, developing less carbon-hungry technology and transport systems and attempts by individuals to lead carbon neutral lifestyles by monitoring the fossil fuel use embodied in all the goods and services they use. Engineering of emerging technologies such as carbon-neutral fuel and energy storage systems such as power to gas, compressed air energy storage, and pumped-storage hydroelectricity are necessary to store power from transient renewable energy sources including emerging renewables such as airborne wind turbines.

Water
Water security and food security are inextricably linked. In the decade 1951–60 human water withdrawals were four times greater than the previous decade. This rapid increase resulted from scientific and technological developments impacting through the economy—especially the increase in irrigated land, growth in industrial and power sectors, and intensive dam construction on all continents. This altered the water cycle of rivers and lakes, affected their water quality and had a significant impact on the global water cycle. Currently towards 35% of human water use is unsustainable, drawing on diminishing aquifers and reducing the flows of major rivers: this percentage is likely to increase if climate change impacts become more severe, populations increase, aquifers become progressively depleted and supplies become polluted and unsanitary. From 1961 to 2001 water demand doubled—agricultural use increased by 75%, industrial use by more than 200%, and domestic use more than 400%. In the 1990s it was estimated that humans were using 40–50% of the globally available freshwater in the approximate proportion of 70% for agriculture, 22% for industry, and 8% for domestic purposes with total use progressively increasing.

Water efficiency is being improved on a global scale by increased demand management, improved infrastructure, improved water productivity of agriculture, minimising the water intensity (embodied water) of goods and services, addressing shortages in the non-industrialized world, concentrating food production in areas of high productivity, and planning for climate change, such as through flexible system design. A promising direction towards sustainable development is to design systems that are flexible and reversible. At the local level, people are becoming more self-sufficient by harvesting rainwater and reducing use of mains water.

Food
The American Public Health Association (APHA) defines a “sustainable food system” as “one that provides healthy food to meet current food needs while maintaining healthy ecosystems that can also provide food for generations to come with minimal negative impact to the environment. A sustainable food system also encourages local production and distribution infrastructures and makes nutritious food available, accessible, and affordable to all. Further, it is humane and just, protecting farmers and other workers, consumers, and communities.” Concerns about the environmental impacts of agribusiness and the stark contrast between the obesity problems of the Western world and the poverty and food insecurity of the developing world have generated a strong movement towards healthy, sustainable eating as a major component of overall ethical consumerism. The environmental effects of different dietary patterns depend on many factors, including the proportion of animal and plant foods consumed and the method of food production. The World Health Organization has published a Global Strategy on Diet, Physical Activity and Health report which was endorsed by the May 2004 World Health Assembly. It recommends the Mediterranean diet which is associated with health and longevity and is low in meat, rich in fruits and vegetables, low in added sugar and limited salt, and low in saturated fatty acids; the traditional source of fat in the Mediterranean is olive oil, rich in monounsaturated fat. The healthy rice-based Japanese diet is also high in carbohydrates and low in fat. Both diets are low in meat and saturated fats and high in legumes and other vegetables; they are associated with a low incidence of ailments and low environmental impact.

At the global level the environmental impact of agribusiness is being addressed through sustainable agriculture and organic farming. At the local level there are various movements working towards local food production, more productive use of urban wastelands and domestic gardens including permaculture, urban horticulture, local food, slow food, sustainable gardening, and organic gardening.

Sustainable seafood is seafood from either fished or farmed sources that can maintain or increase production in the future without jeopardizing the ecosystems from which it was acquired. The sustainable seafood movement has gained momentum as more people become aware about both overfishing and environmentally destructive fishing methods.

Materials, toxic substances, waste
As global population and affluence has increased, so has the use of various materials increased in volume, diversity and distance transported. Included here are raw materials, minerals, synthetic chemicals (including hazardous substances), manufactured products, food, living organisms and waste. By 2050, humanity could consume an estimated 140 billion tons of minerals, ores, fossil fuels and biomass per year (three times its current amount) unless the economic growth rate is decoupled from the rate of natural resource consumption. Developed countries’ citizens consume an average of 16 tons of those four key resources per capita, ranging up to 40 or more tons per person in some developed countries with resource consumption levels far beyond what is likely sustainable.

Sustainable use of materials has targeted the idea of dematerialization, converting the linear path of materials (extraction, use, disposal in landfill) to a circular material flow that reuses materials as much as possible, much like the cycling and reuse of waste in nature. This approach is supported by product stewardship and the increasing use of material flow analysis at all levels, especially individual countries and the global economy. The use of sustainable biomaterials that come from renewable sources and that can be recycled is preferred to the use on non-renewables from a life cycle standpoint.

Synthetic chemical production has escalated following the stimulus it received during the second World War. Chemical production includes everything from herbicides, pesticides and fertilizers to domestic chemicals and hazardous substances. Apart from the build-up of greenhouse gas emissions in the atmosphere, chemicals of particular concern include: heavy metals, nuclear waste, chlorofluorocarbons, persistent organic pollutants and all harmful chemicals capable of bioaccumulation. Although most synthetic chemicals are harmless there needs to be rigorous testing of new chemicals, in all countries, for adverse environmental and health effects. International legislation has been established to deal with the global distribution and management of dangerous goods. The effects of some chemical agents needed long-term measurements and a lot of legal battles to realize their danger to human health. The classification of the toxic carcinogenic agents is handle by the International Agency for Research on Cancer.

Related Post

Every economic activity produces material that can be classified as waste. To reduce waste, industry, business and government are now mimicking nature by turning the waste produced by industrial metabolism into resource. Dematerialization is being encouraged through the ideas of industrial ecology, ecodesign and ecolabelling. In addition to the well-established “reduce, reuse and recycle”, shoppers are using their purchasing power for ethical consumerism.

The European Union is expected to table by the end of 2015 an ambitious Circular Economy package which is expected to include concrete legislative proposals on waste management, ecodesign and limits on land fills.

Economic dimension
On one account, sustainability “concerns the specification of a set of actions to be taken by present persons that will not diminish the prospects of future persons to enjoy levels of consumption, wealth, utility, or welfare comparable to those enjoyed by present persons”. Sustainability interfaces with economics through the social and ecological consequences of economic activity. Sustainability economics represents: “… a broad interpretation of ecological economics where environmental and ecological variables and issues are basic but part of a multidimensional perspective. Social, cultural, health-related and monetary/financial aspects have to be integrated into the analysis.” However, the concept of sustainability is much broader than the concepts of sustained yield of welfare, resources, or profit margins. At present, the average per capita consumption of people in the developing world is sustainable but population numbers are increasing and individuals are aspiring to high-consumption Western lifestyles. The developed world population is only increasing slightly but consumption levels are unsustainable. The challenge for sustainability is to curb and manage Western consumption while raising the standard of living of the developing world without increasing its resource use and environmental impact. This must be done by using strategies and technology that break the link between, on the one hand, economic growth and on the other, environmental damage and resource depletion.

A recent UNEP report proposes a green economy defined as one that “improves human well-being and social equity, while significantly reducing environmental risks and ecological scarcities”: it “does not favor one political perspective over another but works to minimize excessive depletion of natural capital”. The report makes three key findings: “that greening not only generates increases in wealth, in particular a gain in ecological commons or natural capital, but also (over a period of six years) produces a higher rate of GDP growth”; that there is “an inextricable link between poverty eradication and better maintenance and conservation of the ecological commons, arising from the benefit flows from natural capital that are received directly by the poor”; “in the transition to a green economy, new jobs are created, which in time exceed the losses in “brown economy” jobs. However, there is a period of job losses in transition, which requires investment in re-skilling and re-educating the workforce”.

Several key areas have been targeted for economic analysis and reform: the environmental effects of unconstrained economic growth; the consequences of nature being treated as an economic externality; and the possibility of an economics that takes greater account of the social and environmental consequences of market behavior.

Decoupling environmental degradation and economic growth
Historically there has been a close correlation between economic growth and environmental degradation: as communities grow, so the environment declines. This trend is clearly demonstrated on graphs of human population numbers, economic growth, and environmental indicators. Unsustainable economic growth has been starkly compared to the malignant growth of a cancer because it eats away at the Earth’s ecosystem services which are its life-support system. There is concern that, unless resource use is checked, modern global civilization will follow the path of ancient civilizations that collapsed through overexploitation of their resource base. While conventional economics is concerned largely with economic growth and the efficient allocation of resources, ecological economics has the explicit goal of sustainable scale (rather than continual growth), fair distribution and efficient allocation, in that order. The World Business Council for Sustainable Development states that “business cannot succeed in societies that fail”.

A different proposed solution to partially decouple economic growth from environmental degradation is the restore approach. This approach views “restore” as a fourth component to the common reduce, reuse, recycle motto. Participants in such efforts are encouraged to voluntarily donate towards nature conservation a small fraction of the financial savings they experience through a more frugal use of resources. These financial savings would normally lead to rebound effects, but a theoretical analysis suggests that donating even a small fraction of the experienced savings can potentially more than eliminate rebound effects.

Nature as an economic externality

One school of thought, often labeled ecosocialism or ecological Marxism, asserts that the capitalist economic system is fundamentally incompatible with the ecological and social requirements of sustainability. This theory rests on the premises that:

Capitalism’s sole economic purpose is “unlimited capital accumulation” in the hands of the capitalist class
The urge to accumulate (the profit motive) drives capitalists to continually reinvest and expand production, creating indefinite and unsustainable economic growth
“Capital tends to degrade the conditions of its own production” (the ecosystems and resources on which any economy depends)

Social dimension
Sustainability issues are generally expressed in scientific and environmental terms, as well as in ethical terms of stewardship, but implementing change is a social challenge that entails, among other things, international and national law, urban planning and transport, local and individual lifestyles and ethical consumerism. “The relationship between human rights and human development, corporate power and environmental justice, global poverty and citizen action, suggest that responsible global citizenship is an inescapable element of what may at first glance seem to be simply matters of personal consumer and moral choice.”

Peace, security, social justice
Social disruptions like war, crime and corruption divert resources from areas of greatest human need, damage the capacity of societies to plan for the future, and generally threaten human well-being and the environment. Broad-based strategies for more sustainable social systems include: improved education and the political empowerment of women, especially in developing countries; greater regard for social justice, notably equity between rich and poor both within and between countries; and intergenerational equity. Depletion of natural resources including fresh water increases the likelihood of “resource wars”. This aspect of sustainability has been referred to as environmental security and creates a clear need for global environmental agreements to manage resources such as aquifers and rivers which span political boundaries, and to protect shared global systems including oceans and the atmosphere.

Poverty
A major hurdle to achieve sustainability is the alleviation of poverty. It has been widely acknowledged that poverty is one source of environmental degradation. Such acknowledgment has been made by the Brundtland Commission report Our Common Future and the Millennium Development Goals. There is a growing realization in national governments and multilateral institutions that it is impossible to separate economic development issues from environment issues: according to the Brundtland report, “poverty is a major cause and effect of global environmental problems. It is therefore futile to attempt to deal with environmental problems without a broader perspective that encompasses the factors underlying world poverty and international inequality.” Individuals living in poverty tend to rely heavily on their local ecosystem as a source for basic needs (such as nutrition and medicine) and general well-being. As population growth continues to increase, increasing pressure is being placed on the local ecosystem to provide these basic essentials. According to the UN Population Fund, high fertility and poverty have been strongly correlated, and the world’s poorest countries also have the highest fertility and population growth rates.

The word sustainability is also used widely by western country development agencies and international charities to focus their poverty alleviation efforts in ways that can be sustained by the local populace and its environment. For example, teaching water treatment to the poor by boiling their water with charcoal, would not generally be considered a sustainable strategy, whereas using PET solar water disinfection would be. Also, sustainable best practices can involve the recycling of materials, such as the use of recycled plastics for lumber where deforestation has devastated a country’s timber base. Another example of sustainable practices in poverty alleviation is the use of exported recycled materials from developed to developing countries, such as Bridges to Prosperity’s use of wire rope from shipping container gantry cranes to act as the structural wire rope for footbridges that cross rivers in poor rural areas in Asia and Africa.

Human relationship to nature
According to Murray Bookchin, the idea that humans must dominate nature is common in hierarchical societies. Bookchin contends that capitalism and market relationships, if unchecked, have the capacity to reduce the planet to a mere resource to be exploited. Nature is thus treated as a commodity: “The plundering of the human spirit by the market place is paralleled by the plundering of the earth by capital.” Social ecology, founded by Bookchin, is based on the conviction that nearly all of humanity’s present ecological problems originate in, indeed are mere symptoms of, dysfunctional social arrangements. Whereas most authors proceed as if our ecological problems implementing recommendations which stem from physical, biological, economic etc., studies, Bookchin’s claim is that these problems can only be resolved by understanding the underlying social processes and intervening in those processes by applying the concepts and methods of the social sciences.

Human settlements
One approach to sustainable living, exemplified by small-scale urban transition towns and rural ecovillages, seeks to create self-reliant communities based on principles of simple living, which maximize self-sufficiency particularly in food production. These principles, on a broader scale, underpin the concept of a bioregional economy. These approaches often utilize commons based knowledge sharing of open source appropriate technology.

Other approaches, loosely based around New Urbanism, are successfully reducing environmental impacts by altering the built environment to create and preserve sustainable cities which support sustainable transport and zero emission housing. Residents in compact urban neighborhoods drive fewer miles, and have significantly lower environmental impacts across a range of measures, compared with those living in sprawling suburbs. Compact urban neighbourhoods would also promote a great people climate, where by increasing the accessibility to bike, walk or take public transport within neighbourhoods would increase the amount of interaction between people. With more diversification between people, this increases people’s happiness and leads to a better standard of living. In sustainable architecture the recent movement of New Classical Architecture promotes a sustainable approach towards construction, that appreciates and develops smart growth, architectural tradition and classical design. This in contrast to modernist and globally uniform architecture, as well as opposing solitary housing estates and suburban sprawl. Both trends started in the 1980s. The concept of Circular flow land use management has also been introduced in Europe to promote sustainable land use patterns that strive for compact cities and a reduction of greenfield land take by urban sprawl.

Human and labor rights
Application of social sustainability requires stakeholders to look at human and labor rights, prevention of human trafficking, and other human rights risks. These issues should be considered in production and procurement of various worldwide commodities. The international community has identified many industries whose practices have been known to violate social sustainability, and many of these industries have organizations in place that aid in verifying the social sustainability of products and services. The Equator Principles (financial industry), Fair Wear Foundation (garments), and Electronics Industry Citizenship Coalition are examples of such organizations and initiatives. Resources are also available for verifying the life-cycle of products and the producer or vendor level, such as Green Seal for cleaning products, NSF-140 for carpet production, and even labeling of Organic food in the United States.

Cultural dimension
The cultural dimension of sustainability is known as cultural sustainability. Important in the advancement of this notion have been the United Nations, Unesco, and in particular their Agenda 21 and Agenda 21 for culture (now also known as Culture 21), a program for cultural governance developed in 2002–2004 and coordinated by United Cities and Local Governments UCLG, created in 2004.

Tourism
Sustainability is central to underpinning feelings of authenticity in tourism. Experiences can be enhanced when substituting the contrived for the genuine, and at the same time inspire a potentially deleterious appetite for follow-up visits to the real thing: objectively authentic sites untouched by repair or rejuvenation. Feelings of authenticity at a tourist site are thus implicitly linked to sustainable tourism; as the maximisation of existential “felt” authenticity at sites of limited historical provenance increases the likelihood of return visits.

Source from Wikipedia

Share