Climate change mitigation

Climate change mitigation consists of actions to limit the magnitude or rate of long-term climate change. Climate change mitigation generally involves reductions in human (anthropogenic) emissions of greenhouse gases (GHGs). Mitigation may also be achieved by increasing the capacity of carbon sinks, e.g., through reforestation. Mitigation policies can substantially reduce the risks associated with human-induced global warming.

According to the IPCC’s 2014 assessment report, “Mitigation is a public good; climate change is a case of the ‘tragedy of the commons’. Effective climate change mitigation will not be achieved if each agent (individual, institution or country) acts independently in its own selfish interest (see International cooperation and Emissions trading), suggesting the need for collective action. Some adaptation actions, on the other hand, have characteristics of a private good as benefits of actions may accrue more directly to the individuals, regions, or countries that undertake them, at least in the short term. Nevertheless, financing such adaptive activities remains an issue, particularly for poor individuals and countries.”

Examples of mitigation include reducing energy demand by increasing energy efficiency, phasing out fossil fuels by switching to low-carbon energy sources, and removing carbon dioxide from Earth’s atmosphere. for example, through improved building insulation. Another approach to climate change mitigation is climate engineering.

Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC). The ultimate objective of the UNFCCC is to stabilize atmospheric concentrations of GHGs at a level that would prevent dangerous human interference of the climate system. Scientific analysis can provide information on the impacts of climate change, but deciding which impacts are dangerous requires value judgments.

In 2010, Parties to the UNFCCC agreed that future global warming should be limited to below 2.0 °C (3.6 °F) relative to the pre-industrial level. With the Paris Agreement of 2015 this was confirmed, but was revised with a new target laying down “parties will do the best” to achieve warming below 1.5 °C. The current trajectory of global greenhouse gas emissions does not appear to be consistent with limiting global warming to below 1.5 or 2 °C. Other mitigation policies have been proposed, some of which are more stringent or modest than the 2 °C limit.

Greenhouse gas concentrations and stabilization
One of the issues often discussed in relation to climate change mitigation is the stabilization of greenhouse gas concentrations in the atmosphere. The United Nations Framework Convention on Climate Change (UNFCCC) has the ultimate objective of preventing “dangerous” anthropogenic (i.e., human) interference of the climate system. As is stated in Article 2 of the Convention, this requires that greenhouse gas (GHG) concentrations are stabilized in the atmosphere at a level where ecosystems can adapt naturally to climate change, food production is not threatened, and economic development can proceed in a sustainable fashion.

There are a number of anthropogenic greenhouse gases. These include carbon dioxide (chemical formula: CO2), methane (CH
4), nitrous oxide (N
2O), and a group of gases referred to as halocarbons. Another greenhouse gas, water vapor, has also risen as an indirect result of human activities. The emissions reductions necessary to stabilize the atmospheric concentrations of these gases varies. CO2 is the most important of the anthropogenic greenhouse gases (see radiative forcing).

There is a difference between stabilizing CO2 emissions and stabilizing atmospheric concentrations of CO2. Stabilizing emissions of CO2 at current levels would not lead to a stabilization in the atmospheric concentration of CO2. In fact, stabilizing emissions at current levels would result in the atmospheric concentration of CO2 continuing to rise over the 21st century and beyond (see the graphs opposite).

The reason for this is that human activities are adding CO2 to the atmosphere faster than natural processes can remove it (see carbon dioxide in Earth’s atmosphere for a complete explanation). This is analogous to a flow of water into a bathtub. So long as the tap runs water (analogous to the emission of carbon dioxide) into the tub faster than water escapes through the plughole (the natural removal of carbon dioxide from the atmosphere), then the level of water in the tub (analogous to the concentration of carbon dioxide in the atmosphere) will continue to rise.

According to some studies, stabilizing atmospheric CO2 concentrations would require anthropogenic CO2 emissions to be reduced by 80% relative to the peak emissions level. An 80% reduction in emissions would stabilize CO2 concentrations for around a century, but even greater reductions would be required beyond this. Other research has found that, after leaving room for emissions for food production for 9 billion people and to keep the global temperature rise below 2 °C, emissions from energy production and transport will have to peak almost immediately in the developed world and decline at ca. 10% per annum until zero emissions are reached around 2030. In developing countries energy and transport emissions would have to peak by 2025 and then decline similarly.

Stabilizing the atmospheric concentration of the other greenhouse gasses humans emit also depends on how fast their emissions are added to the atmosphere, and how fast the GHGs are removed. Stabilization for these gases is described in the later section on non-CO2 GHGs.

In 2018 an international team of scientist published research saying that the current mitigation policy in Paris Agreement is insufficient to limit the temperature rise to 2 degrees. They say that even if all the current pledges will be accomplished there is a chance for a 4.5 degree temperature rise in decades. To preventing that, restoration of natural Carbon sinks, Carbon dioxide removal, changes in society and values will be necessary.

Projections
Projections of future greenhouse gas emissions are highly uncertain. In the absence of policies to mitigate climate change, GHG emissions could rise significantly over the 21st century.

Numerous assessments have considered how atmospheric GHG concentrations could be stabilized. The lower the desired stabilization level, the sooner global GHG emissions must peak and decline. GHG concentrations are unlikely to stabilize this century without major policy changes.

Methods and means
Assessments often suggest that GHG emissions can be reduced using a portfolio of low-carbon technologies. At the core of most proposals is the reduction of greenhouse gas (GHG) emissions through reducing energy waste and switching to low-carbon power sources of energy. As the cost of reducing GHG emissions in the electricity sector appears to be lower than in other sectors, such as in the transportation sector, the electricity sector may deliver the largest proportional carbon reductions under an economically efficient climate policy.

“Economic tools can be useful in designing climate change mitigation policies.” “While the limitations of economics and social welfare analysis, including cost–benefit analysis, are widely documented, economics nevertheless provides useful tools for assessing the pros and cons of taking, or not taking, action on climate change mitigation, as well as of adaptation measures, in achieving competing societal goals. Understanding these pros and cons can help in making policy decisions on climate change mitigation and can influence the actions taken by countries, institutions and individuals.”

Other frequently discussed means include efficiency, public transport, increasing fuel economy in automobiles (which includes the use of electric hybrids), charging plug-in hybrids and electric cars by low-carbon electricity, making individual changes, and changing business practices. Many fossil fuel driven vehicles can be converted to use electricity, the US has the potential to supply electricity for 73% of light duty vehicles (LDV), using overnight charging. The US average CO2 emissions for a battery-electric car is 180 grams per mile vs 430 grams per mile for a gasoline car. The emissions would be displaced away from street level, where they have “high human-health implications. Increased use of electricity “generation for meeting the future transportation load is primarily fossil-fuel based”, mostly natural gas, followed by coal, but could also be met through nuclear, tidal, hydroelectric and other sources.

A range of energy technologies may contribute to climate change mitigation. These include nuclear power and renewable energy sources such as biomass, hydroelectricity, wind power, solar power, geothermal power, ocean energy, and; the use of carbon sinks, and carbon capture and storage. For example, Pacala and Socolow of Princeton have proposed a 15 part program to reduce CO2 emissions by 1 billion metric tons per year − or 25 billion tons over the 50-year period using today’s technologies as a type of global warming game.

Another consideration is how future socioeconomic development proceeds. Development choices (or “pathways”) can lead differences in GHG emissions. Political and social attitudes may affect how easy or difficult it is to implement effective policies to reduce emissions.

Demand side management

Lifestyle and behavior
The IPCC Fifth Assessment Report emphasises that behaviour, lifestyle, and cultural change have a high mitigation potential in some sectors, particularly when complementing technological and structural change.:20 In general, higher consumption lifestyles have a greater environmental impact. Several scientific studies have shown that when people, especially those living in developed countries but more generally including all countries, wish to reduce their carbon footprint, there are four key “high-impact” actions they can take:

1. Not having an additional child (58.6 tonnes CO2-equivalent emission reductions per year)
2. Living car-free (2.4 tonnes CO2)
3. Avoiding one round-trip transatlantic flight (1.6 tonnes)
4. Eating a plant-based diet (0.8 tonnes)

These appear to differ significantly from the popular advice for “greening” one’s lifestyle, which seem to fall mostly into the “low-impact” category: Replacing a typical car with a hybrid (0.52 tonnes); Washing clothes in cold water (0.25 tonnes); Recycling (0.21 tonnes); Upgrading light bulbs (0.10 tonnes); etc. The researchers found that public discourse on reducing one’s carbon footprint overwhelmingly focuses on low-impact behaviors, and that mention of the high-impact behaviors is almost non-existent in the mainstream media, government publications, K-12 school textbooks, etc.

The researchers added that “Our recommended high-impact actions are more effective than many more commonly discussed options (e.g. eating a plant-based diet saves eight times more emissions than upgrading light bulbs). More significantly, a US family who chooses to have one fewer child would provide the same level of emissions reductions as 684 teenagers who choose to adopt comprehensive recycling for the rest of their lives.”

Dietary change
Overall, food accounts for the largest share of consumption-based GHG emissions with nearly 20% of the global carbon footprint, followed by housing, mobility, services, manufactured products, and construction. Food and services are more significant in poor countries, while mobility and manufactured goods are more significant in rich countries.:327 A 2014 study into the real-life diets of British people estimates their greenhouse gas contributions (CO2eq) to be: 7.19 kg/day for high meat-eaters through to 3.81 kg/day for vegetarians and 2.89 kg/day for vegans. The widespread adoption of a vegetarian diet could cut food-related greenhouse gas emissions by 63% by 2050. China introduced new dietary guidelines in 2016 which aim to cut meat consumption by 50% and thereby reduce greenhouse gas emissions by 1 billion tonnes by 2030. A 2016 study concluded that taxes on meat and milk could simultaneously result in reduced greenhouse gas emissions and healthier diets. The study analyzed surcharges of 40% on beef and 20% on milk and suggests that an optimum plan would reduce emissions by 1 billion tonnes per year.

Energy efficiency and conservation
Efficient energy use, sometimes simply called “energy efficiency”, is the goal of efforts to reduce the amount of energy required to provide products and services. For example, insulating a home allows a building to use less heating and cooling energy to achieve and maintain a comfortable temperature. Installing LED lighting, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Compact fluorescent lamps use only 33% of the energy and may last 6 to 10 times longer than incandescent lights. LED lamps use only about 10% of the energy an incandescent lamp requires.

Energy efficiency has proved to be a cost-effective strategy for building economies without necessarily growing energy consumption. For example, the state of California began implementing energy-efficiency measures in the mid-1970s, including building code and appliance standards with strict efficiency requirements. During the following years, California’s energy consumption has remained approximately flat on a per capita basis while national US consumption doubled. As part of its strategy, California implemented a “loading order” for new energy resources that puts energy efficiency first, renewable electricity supplies second, and new fossil-fired power plants last.

Energy conservation is broader than energy efficiency in that it encompasses using less energy to achieve a lesser energy demanding service, for example through behavioral change, as well as encompassing energy efficiency. Examples of conservation without efficiency improvements would be heating a room less in winter, driving less, or working in a less brightly lit room. As with other definitions, the boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and economic terms. This is especially the case when actions are directed at the saving of fossil fuels.

Reducing energy use is seen as a key solution to the problem of reducing greenhouse gas emissions. According to the International Energy Agency, improved energy efficiency in buildings, industrial processes and transportation could reduce the world’s energy needs in 2050 by one third, and help control global emissions of greenhouse gases.

Demand-side switching sources
Fuel switching on the demand side refers to changing the type of fuel used to satisfy a need for an energy service. To meet deep decarbonization goals, like the 80% reduction by 2050 goal being discussed in California and the European Union, many primary energy changes are needed. Energy efficiency alone may not be sufficient to meet these goals, switching fuels used on the demand side will help lower carbon emissions. Progressively coal, oil and eventually natural gas for space and water heating in buildings will need to be reduced. For an equivalent amount of heat, burning natural gas produces about 45 per cent less carbon dioxide than burning coal. There are various ways in which this could happen, and different strategies will likely make sense in different locations. While the system efficiency of a gas furnace may be higher than the combination of natural gas power plant and electric heat, the combination of the same natural gas power plant and an electric heat pump has lower emissions per unit of heat delivered in all but the coldest climates. This is possible because of the very efficient coefficient of performance of heat pumps.

At the beginning of this century 70% of all electricity was generated by fossil fuels, and as carbon free sources eventually make up half of the generation mix, replacing gas or oil furnaces and water heaters with electric ones will have a climate benefit. In areas like Norway, Brazil, and Quebec that have abundant hydroelectricity, electric heat and hot water are common.

The economics of switching the demand side from fossil fuels to electricity for heating, will depend on the price of fuels vs electricity and the relative prices of the equipment. The EIA Annual Energy Outlook 2014 suggests that domestic gas prices will rise faster than electricity prices which will encourage electrification in the coming decades. Electrifying heating loads may also provide a flexible resource that can participate in demand response. Since thermostatically controlled loads have inherent energy storage, electrification of heating could provide a valuable resource to integrate variable renewable resources into the grid.

Alternatives to electrification, include decarbonizing pipeline gas through power to gas, biogas, or other carbon-neutral fuels. A 2015 study by Energy+Environmental Economics shows that a hybrid approach of decarbonizing pipeline gas, electrification, and energy efficiency can meet carbon reduction goals at a similar cost as only electrification and energy efficiency in Southern California.

Demand side grid management
Expanding intermittent electrical sources such as wind power, creates a growing problem balancing grid fluctuations. Some of the plans include building pumped storage or continental super grids costing billions of dollars. However instead of building for more power, there are a variety of ways to affect the size and timing of electricity demand on the consumer side. Designing for reduced demands on a smaller power grid is more efficient and economic than having extra generation and transmission for intermittentcy, power failures and peak demands. Having these abilities is one of the chief aims of a smart grid.

Time of use metering is a common way to motivate electricity users to reduce their peak load consumption. For instance, running dishwashers and laundry at night after the peak has passed, reduces electricity costs.

Dynamic demand plans have devices passively shut off when stress is sensed on the electrical grid. This method may work very well with thermostats, when power on the grid sags a small amount, a low power temperature setting is automatically selected reducing the load on the grid. For instance millions of refrigerators reduce their consumption when clouds pass over solar installations. Consumers would need to have a smart meter in order for the utility to calculate credits.

Demand response devices could receive all sorts of messages from the grid. The message could be a request to use a low power mode similar to dynamic demand, to shut off entirely during a sudden failure on the grid, or notifications about the current and expected prices for power. This would allow electric cars to recharge at the least expensive rates independent of the time of day. The vehicle-to-grid suggestion would use a car’s battery or fuel cell to supply the grid temporarily.

By sector

Transport
Transportation emissions account for roughly 1/4 of emissions worldwide, and are even more important in terms of impact in developed nations especially in North America and Australia. Many citizens of countries like the United States and Canada who drive personal cars often, see well over half of their climate change impact stemming from the emissions produced from their cars. Modes of mass transportation such as bus, light rail (metro, subway, etc.), and long-distance rail are far and away the most energy-efficient means of motorized transportation for passengers, able to use in many cases over twenty times less energy per person-distance than a personal automobile. Modern energy-efficient technologies, such as plug-in hybrid electric vehicles and carbon-neutral synthetic gasoline & Jet fuel may also help to reduce the consumption of petroleum, land use changes and emissions of carbon dioxide. Utilizing rail transport, especially electric rail, over the far less efficient air transport and truck transport significantly reduces emissions. With the use of electric trains and cars in transportation there is the opportunity to run them with low-carbon power, producing far fewer emissions.

Urban planning
Effective urban planning to reduce sprawl aims to decrease Vehicle Miles Travelled (VMT), lowering emissions from transportation. Personal cars are extremely inefficient at moving passengers, while public transport and bicycles are many times more efficient (as is the simplest form of human transportation, walking). All of these are encouraged by urban/community planning and are an effective way to reduce greenhouse gas emissions. Between 1982 and 1997, the amount of land consumed for urban development in the United States increased by 47 percent while the nation’s population grew by only 17 percent. Inefficient land use development practices have increased infrastructure costs as well as the amount of energy needed for transportation, community services, and buildings.

At the same time, a growing number of citizens and government officials have begun advocating a smarter approach to land use planning. These smart growth practices include compact community development, multiple transportation choices, mixed land uses, and practices to conserve green space. These programs offer environmental, economic, and quality-of-life benefits; and they also serve to reduce energy usage and greenhouse gas emissions.

Approaches such as New Urbanism and transit-oriented development seek to reduce distances travelled, especially by private vehicles, encourage public transit and make walking and cycling more attractive options. This is achieved through “medium-density”, mixed-use planning and the concentration of housing within walking distance of town centers and transport nodes.

Smarter growth land use policies have both a direct and indirect effect on energy consuming behavior. For example, transportation energy usage, the number one user of petroleum fuels, could be significantly reduced through more compact and mixed use land development patterns, which in turn could be served by a greater variety of non-automotive based transportation choices.

Building design
Emissions from housing are substantial, and government-supported energy efficiency programmes can make a difference.

For institutions of higher learning in the United States, greenhouse gas emissions depend primarily on total area of buildings and secondarily on climate. If climate is not taken into account, annual greenhouse gas emissions due to energy consumed on campuses plus purchased electricity can be estimated with the formula, E=aSb, where a =0.001621 metric tonnes of CO2 equivalent/square foot or 0.0241 metric tonnes of CO2 equivalent/square meter and b= 1.1354.

New buildings can be constructed using passive solar building design, low-energy building, or zero-energy building techniques, using renewable heat sources. Existing buildings can be made more efficient through the use of insulation, high-efficiency appliances (particularly hot water heaters and furnaces), double- or triple-glazed gas-filled windows, external window shades, and building orientation and siting. Renewable heat sources such as shallow geothermal and passive solar energy reduce the amount of greenhouse gasses emitted. In addition to designing buildings which are more energy-efficient to heat, it is possible to design buildings that are more energy-efficient to cool by using lighter-coloured, more reflective materials in the development of urban areas (e.g. by painting roofs white) and planting trees. This saves energy because it cools buildings and reduces the urban heat island effect thus reducing the use of air conditioning.

Agriculture
According to the EPA, agricultural soil management practices can lead to production and emission of nitrous oxide (N2O), a major greenhouse gas and air pollutant. Activities that can contribute to N
2O emissions include fertilizer usage, irrigation, and tillage. The management of soils accounts for over half of the emissions from the Agriculture sector. Cattle livestocks account for one third of emissions, through methane emissions. Manure management and rice cultivation also produce gaseous emissions.

Methods that significantly enhance carbon sequestration in soil include no-till farming, residue mulching, cover cropping, and crop rotation, all of which are more widely used in organic farming than in conventional farming. Because only 5% of US farmland currently uses no-till and residue mulching, there is a large potential for carbon sequestration.

A 2015 study found that farming can deplete soil carbon and render soil incapable of supporting life; however, the study also showed that conservation farming can protect carbon in soils, and repair damage over time.

The farming practise of cover crops has been recognized as climate-smart agriculture by the White House.

In Europe the estimation of the current 0–30 cm SOC stock of agricultural soils was 17.63 Gt. In a subsequent study, authors estimated the best management practices to mitigate soil organic carbon: conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops.

Societal controls
Another method being examined is to make carbon a new currency by introducing tradeable “personal carbon credits”. The idea being it will encourage and motivate individuals to reduce their ‘carbon footprint’ by the way they live. Each citizen will receive a free annual quota of carbon that they can use to travel, buy food, and go about their business. It has been suggested that by using this concept it could actually solve two problems; pollution and poverty, old age pensioners will actually be better off because they fly less often, so they can cash in their quota at the end of the year to pay heating bills and so forth.

Population
Various organizations promote population control as a means for mitigating global warming. Proposed measures include improving access to family planning and reproductive health care and information, reducing natalistic politics, public education about the consequences of continued population growth, and improving access of women to education and economic opportunities.

Population control efforts are impeded by there being somewhat of a taboo in some countries against considering any such efforts. Also, various religions discourage or prohibit some or all forms of birth control.

Population size has a different per capita effect on global warming in different countries, since the per capita production of anthropogenic greenhouse gases varies greatly by country.

Costs and benefits

Costs
The Stern Review proposes stabilising the concentration of greenhouse-gas emissions in the atmosphere at a maximum of 550ppm CO2e by 2050. The Review estimates that this would mean cutting total greenhouse-gas emissions to three quarters of 2007 levels. The Review further estimates that the cost of these cuts would be in the range −1.0 to +3.5% of World GDP, (i.e. GWP), with an average estimate of approximately 1%. Stern has since revised his estimate to 2% of GWP. For comparison, the Gross World Product (GWP) at PPP was estimated at $74.5 trillion in 2010, thus 2% is approximately $1.5 trillion. The Review emphasises that these costs are contingent on steady reductions in the cost of low-carbon technologies. Mitigation costs will also vary according to how and when emissions are cut: early, well-planned action will minimise the costs.

One way of estimating the cost of reducing emissions is by considering the likely costs of potential technological and output changes. Policy makers can compare the marginal abatement costs of different methods to assess the cost and amount of possible abatement over time. The marginal abatement costs of the various measures will differ by country, by sector, and over time.

Benefits
Yohe et al. (2007) assessed the literature on sustainability and climate change. With high confidence, they suggested that up to the year 2050, an effort to cap greenhouse gas (GHG) emissions at 550 ppm would benefit developing countries significantly. This was judged to be especially the case when combined with enhanced adaptation. By 2100, however, it was still judged likely that there would be significant effects of global warming. This was judged to be the case even with aggressive mitigation and significantly enhanced adaptive capacity.

Sharing
One of the aspects of mitigation is how to share the costs and benefits of mitigation policies. There is no scientific consensus over how to share these costs and benefits (Toth et al., 2001). In terms of the politics of mitigation, the UNFCCC’s ultimate objective is to stabilize concentrations of GHG in the atmosphere at a level that would prevent “dangerous” climate change (Rogner et al., 2007).

GHG emissions are an important correlate of wealth, at least at present (Banuri et al., 1996, pp. 91–92). Wealth, as measured by per capita income (i.e., income per head of population), varies widely between different countries. Activities of the poor that involve emissions of GHGs are often associated with basic needs, such as heating to stay tolerably warm. In richer countries, emissions tend to be associated with things like cars, central heating, etc. The impacts of cutting emissions could therefore have different impacts on human welfare according to wealth.

Distributing emissions abatement costs
There have been different proposals on how to allocate responsibility for cutting emissions (Banuri et al., 1996, pp. 103–105):

Egalitarianism: this system interprets the problem as one where each person has equal rights to a global resource, i.e., polluting the atmosphere.
Basic needs: this system would have emissions allocated according to basic needs, as defined according to a minimum level of consumption. Consumption above basic needs would require countries to buy more emission rights. From this viewpoint, developing countries would need to be at least as well off under an emissions control regime as they would be outside the regime.
Proportionality and polluter-pays principle: Proportionality reflects the ancient Aristotelian principle that people should receive in proportion to what they put in, and pay in proportion to the damages they cause. This has a potential relationship with the “polluter-pays principle”, which can be interpreted in a number of ways:
Historical responsibilities: this asserts that allocation of emission rights should be based on patterns of past emissions. Two-thirds of the stock of GHGs in the atmosphere at present is due to the past actions of developed countries (Goldemberg et al., 1996, p. 29).
Comparable burdens and ability to pay: with this approach, countries would reduce emissions based on comparable burdens and their ability to take on the costs of reduction. Ways to assess burdens include monetary costs per head of population, as well as other, more complex measures, like the UNDP’s Human Development Index.
Willingness to pay: with this approach, countries take on emission reductions based on their ability to pay along with how much they benefit from reducing their emissions.
Carbon inheritance: Is the notion that we have inherited the (technological) benefits of past emissions, and those who benefit most from them should pay the most. An energy levy has been suggested as a proxy for technological development. Rather than allocating blame for historical emissions, an energy levy pays back the benefits these technologies have brought.

Source from Wikipedia